Deck 4: Transmission Lines: Steady-State Operation

Full screen (f)
exit full mode
Question
A 30km,34.5kV,60Hz30-\mathrm{km}, 34.5-\mathrm{kV}, 60-\mathrm{Hz} three-phase line has a positive-sequence series impedance z=0.19+j0.34Ω/kmz=0.19+j 0.34 \Omega / \mathrm{km} . The load at the receiving end absorbs 10 MVA at 33kV33 \mathrm{kV} . Assuming a short line, calculate: (a) the ABCDA B C D parameters, (b) the sending-end voltage for a load power factor of 0.9 lagging, (c) the sending-end voltage for a load power factor of 0.9 leading.
Use Space or
up arrow
down arrow
to flip the card.
Question
A 150km,230kV,60Hz150-\mathrm{km}, 230-\mathrm{kV}, 60-\mathrm{Hz} three-phase line has a positive-sequence series impedance z=0.08+j0.48Ω/kmz=0.08+j 0.48 \Omega / \mathrm{km} and a positive-sequence shunt admittance y=j3.33×106 S/y=j 3.33 \times 10^{-6} \mathrm{~S} / km\mathrm{km} . At full load, the line delivers 250MW250 \mathrm{MW} at 0.99 p.f. lagging and at 220kV220 \mathrm{kV} . Using the nominal π\pi circuit, calculate: (a) the ABCDA B C D parameters, (b) the sending-end voltage and current, and (c) the percent voltage regulation.
Question
Rework Test Bank Problem 5.2 in per-unit using 100-MVA (three-phase) and 230-kV(line-to-line) base values. Calculate (a) the per-unitABCDparameters, (b) the per-unitsending-end voltage and current, and (c) the percent voltage regulation.
Question
\underline{\underline{0.6507}

-Evaluate cosh(γl)\cosh (\gamma l) and tanh(γl/2)\tanh (\gamma l / 2) for γl=0.4587\gamma l=0.45 \angle \underline{ 87 }^{\circ} per unit.
Question
A 500km,500kV,60Hz500-\mathrm{km}, 500-\mathrm{kV}, 60-\mathrm{Hz} uncompensated three-phase line has a positive-sequence series impedance z=0.03+j0.35Ω/kmz=0.03+j 0.35 \Omega / \mathrm{km} and a positive-sequence shunt admittance y=j4.4×106 S/kmy=j 4.4 \times 10^{-6} \mathrm{~S} / \mathrm{km} . Calculate: (a) ZcZ_{c} , (b) (γl)(\gamma l) , and (c) the exact ABCDA B C D parameters for this line.
Question
At full load the line in Test Bank Problem 5.5 delivers 1000 MW at unity power factor and at 480 kV. Calculate (a) thesending-end voltage, (b) the sending-end current, (c) the sending-end power factor, (d) the full-loadline losses, and (e) the percent voltage regulation.
Question
etermine the equivalent π circuit for the line in TestBank Problem 5.5 and compare it with the nominal π circuit.
Question
A 320km500kV,60Hz320-\mathrm{km} 500-\mathrm{kV}, 60-\mathrm{Hz} three-phase uncompensated line has a positive-sequence series reactance x=0.34Ω/kmx=0.34 \Omega / \mathrm{km} and a positive-sequence shunt admittance y=j4.5×y=j 4.5 \times 106 S/km10^{-6} \mathrm{~S} / \mathrm{km} . Neglecting losses, calculate: (a) Zc\mathrm{Z}_{c} , (b) (γl)(\gamma l) , (c) the ABCDA B C D parameters, (d) the wavelength λ\lambda of the line, in kilometers, and (e) the surge impedance loading in MW.
Question
Determine the equivalent π circuit for the line in Test Bank Problem 5.8.
Question
Rated line voltage is appliedto the sending end of the line in Test Bank Problem 5.8.Calculate the receiving-end voltage when thereceiving end is terminated by (a) an open circuit, (b) the surge impedance of the line,and (c) one-half of thesurge impedance. (d)Also calculate the theoretical maximum realpower that the line can deliver when rated voltage is applied toboth ends of the line.
Question
The line in Test Bank Problem 5.5 has three ACSR 1113-kcmil conductors per chase.Calculate the theoretical maximum real power that this line can deliver and compare withthe thermal limit of the line. Assume VS-VR=1.0 per unit and unity power factor at thereceiving end.
Question
Repeat Test Bank Problems 5.5 and 5.11 if the line length is (a) 200 km200 \mathrm{~km} and (b) 550 km550 \mathrm{~km} .
Question
For the line in Test Bank Problems 5.5 and 5.11 , determine (a) the practical line loadability in MW, assuming VS=1.0V_{S}=1.0 per unit, VR0.95V_{R} \approx 0.95 per unit, and δmax=35\delta_{\max }=35^{\circ} ; (b) the full-load current at 0.99 leading power factor, based on the above practical line loadability; (c) the exact receiving-end voltage for the full-load current in (b) above; and (d) the percent voltage regulation. For this line, is loadability determined by the thermal limit, the drop limit, or stead-state stability?
Question
Determine the practical line loadability in MWand in per unit of SIL for the line in Test Bank Problem 5.5 if the length is(a) 200 km and (b) 600 km. Assume VS = 1.0 per unit, VR =0.95 per unit , δmax=35 \delta_{\max }=35^{\circ} and 0.99 leading power factor at the receiving end.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/14
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 4: Transmission Lines: Steady-State Operation
1
A 30km,34.5kV,60Hz30-\mathrm{km}, 34.5-\mathrm{kV}, 60-\mathrm{Hz} three-phase line has a positive-sequence series impedance z=0.19+j0.34Ω/kmz=0.19+j 0.34 \Omega / \mathrm{km} . The load at the receiving end absorbs 10 MVA at 33kV33 \mathrm{kV} . Assuming a short line, calculate: (a) the ABCDA B C D parameters, (b) the sending-end voltage for a load power factor of 0.9 lagging, (c) the sending-end voltage for a load power factor of 0.9 leading.
(a) Aˉ=Dˉ=1.00pu;Cˉ=0.0 S\bar{A}=\bar{D}=1.0 \angle 0^{\circ} \mathrm{pu} ; \bar{C}=0.0 \mathrm{~S}
Bˉ=Ƶˉ=(0.19+j0.34)(30)=11.68560.8Ω\bar{B}=\bar{Ƶ}=(0.19+j 0.34)(30)=11.685 \angle 60.8^{\circ} \Omega
(b) VˉR=(33/3)0=19.050kVLN\bar{V}_{R}=(33 / \sqrt{3}) \angle 0^{\circ}=19.05 \angle 0^{\circ} \mathrm{kV}_{\mathrm{LN}}
IˉR=SR3VRLLcos1(pf)=103(33)cos10.9=0.175025.84kAVˉS=AˉVˉR+BˉIˉR=1.0(19.05)+(11.68560.8)(0.17525.84)=19.05+2.04534.96=20.73+j1.172=20.762.22kVLN;VS=20.763=35.96kVLL\begin{aligned}\bar{I}_{R} & =\frac{S_{R}}{\sqrt{3} V_{R L-L}} \angle-\cos ^{-1}(p f)=\frac{10}{\sqrt{3}(33)} \angle-\cos ^{-1} 0.9 \\& =0.1750 \angle-25.84^{\circ} \mathrm{kA} \\\bar{V}_{S} & =\bar{A} \bar{V}_{R}+\bar{B} \bar{I}_{R}=1.0(19.05)+\left(11.685 \angle 60.8^{\circ}\right)\left(0.175 \angle-25.84^{\circ}\right) \\& =19.05+2.045 \angle 34.96^{\circ}=20.73+j 1.172 \\& =20.76 \angle 2.22^{\circ} \mathrm{kV}_{\mathrm{LN}} ; V_{S}=20.76 \sqrt{3}=35.96 \mathrm{kV}_{\mathrm{LL}}\end{aligned}
(c) IˉR=0.17525.84kA\bar{I}_{R}=0.175 \angle 25.84^{\circ} \mathrm{kA}
VˉS=1.0(19.05)+(11.68560.8)(0.17525.84)=19.05+2.04486.64=19.17+j2.04=19.284.07kVLNVS=19.283=33.39kVLL\begin{aligned}\bar{V}_{S} & =1.0(19.05)+\left(11.685 \angle 60.8^{\circ}\right)\left(0.175 \angle 25.84^{\circ}\right) \\& =19.05+2.044 \angle 86.64^{\circ} \\& =19.17+j 2.04 \\& =19.28 \angle 4.07^{\circ} \mathrm{kV}_{\mathrm{LN}} \\V_{S} & =19.28 \sqrt{3}=33.39 \mathrm{kV}_{\mathrm{LL}}\end{aligned}
2
A 150km,230kV,60Hz150-\mathrm{km}, 230-\mathrm{kV}, 60-\mathrm{Hz} three-phase line has a positive-sequence series impedance z=0.08+j0.48Ω/kmz=0.08+j 0.48 \Omega / \mathrm{km} and a positive-sequence shunt admittance y=j3.33×106 S/y=j 3.33 \times 10^{-6} \mathrm{~S} / km\mathrm{km} . At full load, the line delivers 250MW250 \mathrm{MW} at 0.99 p.f. lagging and at 220kV220 \mathrm{kV} . Using the nominal π\pi circuit, calculate: (a) the ABCDA B C D parameters, (b) the sending-end voltage and current, and (c) the percent voltage regulation.
 (a) Aˉ=Dˉ=1+YˉƵˉ2=1+12(3.33×106×15090)(.08+j.48)(150)Aˉ=Dˉ=1+12(4.995×10490)(72.9980.54)=1+0.01823170.54=0.9820+j0.002997=0.98200.175 per unit Bˉ=Ƶˉ=72.9980.54ΩCˉ=Yˉ(1+YˉƵˉ4)=4.995×10490(1+.009115170.54)Cˉ=(4.995×10490)(0.991+j0.00150)=(4.995×10490)(0.9910.0867)=4.950×10490.09\begin{array}{l}\text { (a) } \begin{array}{l}\bar{A}=\bar{D}=1+\frac{\bar{Y} \bar{Ƶ}}{2}=1+\frac{1}{2}\left(3.33 \times 10^{-6} \times 150 \angle 90^{\circ}\right)(.08+j .48)(150) \\\begin{aligned}\bar{A}=\bar{D} & =1+\frac{1}{2}\left(4.995 \times 10^{-4} \angle 90^{\circ}\right)\left(72.99 \angle 80.54^{\circ}\right) \\& =1+0.01823 \angle 170.54^{\circ}=0.9820+j 0.002997 \\& =0.9820 \angle 0.175^{\circ} \text { per unit }\end{aligned} \\\begin{aligned}\bar{B}= & \bar{Ƶ}=72.99 \angle 80.54^{\circ} \Omega \\\bar{C}= & \bar{Y}\left(1+\frac{\bar{Y} \bar{Ƶ}}{4}\right)=4.995 \times 10^{-4} \angle 90^{\circ}\left(1+.009115 \angle 170.54^{\circ}\right)\end{aligned} \\\begin{aligned}\bar{C} & =\left(4.995 \times 10^{-4} \angle 90^{\circ}\right)(0.991+j 0.00150) \\& =\left(4.995 \times 10^{-4} \angle 90^{\circ}\right)\left(0.991 \angle 0.0867^{\circ}\right)=4.950 \times 10^{-4} \angle 90.09^{\circ}\end{aligned}\end{array}\end{array}
(b) VˉR=22030=127.020kVVLN \bar{V}_{R}=\frac{220}{\sqrt{3}} \angle 0^{\circ}=127.02 \angle 0^{\circ} \mathrm{kV} \mathrm{V}_{\mathrm{LN}}
IˉR=PRcos1(P.F.)3VRLL(P.F.)=250cos1.993(220)(0.99)=0.66278.11VˉS=AˉVˉR+BˉIˉR=(0.98200.175)(127.020)+(72.9980.54)×(.66278.11)VˉS=124.730.175+48.3772.43VˉS=139.33+j46.49=146.918.45kVLNVS=146.93=254.4kVLIIˉS=CˉVˉR+DIR=(4.95×10490.09)(127.02)+(.9820175)(.66278.6)=0.0628790.09+0.65087.935IˉS=0.6445j0.02697=0.67502.396kA\begin{array}{l}\begin{aligned}\bar{I}_{R}= & \frac{P_{R} \angle-\cos ^{-1}(P . F .)}{\sqrt{3} V_{R L L}(P . F .)}=\frac{250 \angle-\cos ^{-1} .99}{\sqrt{3}(220)(0.99)}=0.6627 \angle-8.11^{\circ} \\\bar{V}_{S}= & \bar{A} \bar{V}_{R}+\bar{B} \bar{I}_{R}=\left(0.9820 \angle 0.175^{\circ}\right)\left(127.02 \angle 0^{\circ}\right)+\left(72.99 \angle 80.54^{\circ}\right) \\& \quad \times\left(.6627 \angle-8.11^{\circ}\right) \\\bar{V}_{S}= & 124.73 \angle 0.175^{\circ}+48.37 \angle 72.43^{\circ} \\\bar{V}_{S}= & 139.33+j 46.49=146.9 \angle 18.45^{\circ} \mathrm{kV} \mathrm{LN} \\V_{S}= & 146.9 \sqrt{3}= \underline{ 254.4 } \mathrm{kV} \mathrm{LI} \\\bar{I}_{S}= & \bar{C} \bar{V}_{R}+\overline{D I}_{R}=\left(4.95 \times 10^{-4} \angle 90.09^{\circ}\right)(127.02)+ \\& \quad\left(.9820 \angle 175^{\circ}\right)\left(.6627 \angle-8.6^{\circ}\right) \\= & 0.06287 \angle 90.09^{\circ}+0.6508 \angle-7.935^{\circ} \\\bar{I}_{S}= & 0.6445-j 0.02697= \underline{\underline{ 0.6750}} \angle-2.396^{\circ} \mathrm{kA}\end{aligned}\end{array}
(c)
VRVZ=VSA=254.40.9820=259.1kV VLL%VrRr=VRVZVRFLVRFL×100=259.1220220×100=17.8%\begin{aligned}V_{R V Z} & =\frac{V_{S}}{A}=\frac{254.4}{0.9820}=259.1 \mathrm{kV} \mathrm{~V}_{\mathrm{LL}} \\\% V_{r} R_{r} & =\frac{V_{R V Z}-V_{R F L}}{V_{R F L}} \times 100=\frac{259.1-220}{220} \times 100=\underline{\underline{17.8}} \%\end{aligned}
3
Rework Test Bank Problem 5.2 in per-unit using 100-MVA (three-phase) and 230-kV(line-to-line) base values. Calculate (a) the per-unitABCDparameters, (b) the per-unitsending-end voltage and current, and (c) the percent voltage regulation.
Zbase =Vbase 2Sbase =(230)2100=529ΩYbase =1/Ƶbase =1.890×103\begin{array}{l}Z_{\text {base }}=\frac{V_{\text {base }}^{2}}{S_{\text {base }}}=\frac{(230)^{2}}{100}=529 \Omega \\Y_{\text {base }}=1 / Ƶ_{\text {base }}=1.890 \times 10^{-3} \end{array}
(a)
Aˉpu=Dˉpu=0.98200.175 per unit Bˉpu=BˉZbase =72.9952980.54=0.138080.54 per unit Cˉpu=CˉYbase =4.950×1041.890×10390.09=0.261990.09 per unit \begin{array}{l}\bar{A}_{p u}=\bar{D}_{p u}=0.9820 \angle 0.175^{\circ} \text { per unit } \\\bar{B}_{p u}=\frac{\bar{B}}{Z_{\text {base }}}=\frac{72.99}{529} \angle 80.54^{\circ}=0.1380 \angle 80.54^{\circ} \text { per unit } \\\bar{C}_{p u}=\frac{\bar{C}}{Y_{\text {base }}}=\frac{4.950 \times 10^{-4}}{1.890 \times 10^{-3}} \angle 90.09^{\circ}=0.2619 \angle 90.09^{\circ} \text { per unit }\end{array}

 \begin{array}{l} Z_{\text {base }}=\frac{V_{\text {base }}^{2}}{S_{\text {base }}}=\frac{(230)^{2}}{100}=529 \Omega \\ Y_{\text {base }}=1 / Ƶ_{\text {base }}=1.890 \times 10^{-3} \end{array}   (a)   \begin{array}{l} \bar{A}_{p u}=\bar{D}_{p u}=0.9820 \angle 0.175^{\circ} \text { per unit } \\ \bar{B}_{p u}=\frac{\bar{B}}{Z_{\text {base }}}=\frac{72.99}{529} \angle 80.54^{\circ}=0.1380 \angle 80.54^{\circ} \text { per unit } \\ \bar{C}_{p u}=\frac{\bar{C}}{Y_{\text {base }}}=\frac{4.950 \times 10^{-4}}{1.890 \times 10^{-3}} \angle 90.09^{\circ}=0.2619 \angle 90.09^{\circ} \text { per unit } \end{array}         \begin{array}{l} \bar{V}_{S P U}= \bar{A}_{P U} \bar{V}_{R P U}+\bar{B}_{P U} \bar{I}_{R P U}=\left(0.982 \angle 0.175^{\circ}\right)\left(0.9565 \angle 0^{\circ}\right)+ \\ \quad\left(0.1380 \angle 80.54^{\circ}\right)\left(2.64^{\circ} \angle-8.11^{\circ}\right) \\ = 0.9393 \angle 0.175^{\circ}+0.3643 \angle 72.43^{\circ}=1.049+j 0.3501 \\ \bar{V}_{S P U}= \underline{\overline{1.106} }  \angle 18.45^{\circ} \text { per unit }\\ \bar{I}_{S P U}=\bar{C}_{P U} \bar{V}_{R P U}+\bar{D}_{P U} \bar{I}_{R P U}=\left(0.2619 \angle 90.09^{\circ}\right)(0.9565)+ \\ \quad\left(0.982 \angle 0.175^{\circ}\right)\left(2.64 \angle-8.11^{\circ}\right) \\ \bar{I}_{S P U}= \underline{\underline{2.569}}  \angle-2.398^{\circ} \text { per unit } \end{array}   (c)   \begin{array}{l} V_{R N L_{p u}}=V_{S p u} / A_{p u}=1.106 / 0.982=1.1263 \text { per unit } \\ \% V . R .=\frac{V_{R N L_{p u}}-V_{R F L p u}}{V_{R F L p u}} \times 100=\frac{1.126-.9565}{.9565} \times 100=\underline{\underline{17.8}} \% \end{array}

VˉSPU=AˉPUVˉRPU+BˉPUIˉRPU=(0.9820.175)(0.95650)+(0.138080.54)(2.648.11)=0.93930.175+0.364372.43=1.049+j0.3501VˉSPU=1.10618.45 per unit IˉSPU=CˉPUVˉRPU+DˉPUIˉRPU=(0.261990.09)(0.9565)+(0.9820.175)(2.648.11)IˉSPU=2.5692.398 per unit \begin{array}{l} \bar{V}_{S P U}= \bar{A}_{P U} \bar{V}_{R P U}+\bar{B}_{P U} \bar{I}_{R P U}=\left(0.982 \angle 0.175^{\circ}\right)\left(0.9565 \angle 0^{\circ}\right)+ \\\quad\left(0.1380 \angle 80.54^{\circ}\right)\left(2.64^{\circ} \angle-8.11^{\circ}\right) \\= 0.9393 \angle 0.175^{\circ}+0.3643 \angle 72.43^{\circ}=1.049+j 0.3501 \\\bar{V}_{S P U}= \underline{\overline{1.106} } \angle 18.45^{\circ} \text { per unit }\\\bar{I}_{S P U}=\bar{C}_{P U} \bar{V}_{R P U}+\bar{D}_{P U} \bar{I}_{R P U}=\left(0.2619 \angle 90.09^{\circ}\right)(0.9565)+ \\\quad\left(0.982 \angle 0.175^{\circ}\right)\left(2.64 \angle-8.11^{\circ}\right) \\\bar{I}_{S P U}= \underline{\underline{2.569}} \angle-2.398^{\circ} \text { per unit }\end{array}
(c)
VRNLpu=VSpu/Apu=1.106/0.982=1.1263 per unit %V.R.=VRNLpuVRFLpuVRFLpu×100=1.126.9565.9565×100=17.8%\begin{array}{l}V_{R N L_{p u}}=V_{S p u} / A_{p u}=1.106 / 0.982=1.1263 \text { per unit } \\\% V . R .=\frac{V_{R N L_{p u}}-V_{R F L p u}}{V_{R F L p u}} \times 100=\frac{1.126-.9565}{.9565} \times 100=\underline{\underline{17.8}} \%\end{array}
4
\underline{\underline{0.6507}

-Evaluate cosh(γl)\cosh (\gamma l) and tanh(γl/2)\tanh (\gamma l / 2) for γl=0.4587\gamma l=0.45 \angle \underline{ 87 }^{\circ} per unit.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
5
A 500km,500kV,60Hz500-\mathrm{km}, 500-\mathrm{kV}, 60-\mathrm{Hz} uncompensated three-phase line has a positive-sequence series impedance z=0.03+j0.35Ω/kmz=0.03+j 0.35 \Omega / \mathrm{km} and a positive-sequence shunt admittance y=j4.4×106 S/kmy=j 4.4 \times 10^{-6} \mathrm{~S} / \mathrm{km} . Calculate: (a) ZcZ_{c} , (b) (γl)(\gamma l) , and (c) the exact ABCDA B C D parameters for this line.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
6
At full load the line in Test Bank Problem 5.5 delivers 1000 MW at unity power factor and at 480 kV. Calculate (a) thesending-end voltage, (b) the sending-end current, (c) the sending-end power factor, (d) the full-loadline losses, and (e) the percent voltage regulation.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
7
etermine the equivalent π circuit for the line in TestBank Problem 5.5 and compare it with the nominal π circuit.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
8
A 320km500kV,60Hz320-\mathrm{km} 500-\mathrm{kV}, 60-\mathrm{Hz} three-phase uncompensated line has a positive-sequence series reactance x=0.34Ω/kmx=0.34 \Omega / \mathrm{km} and a positive-sequence shunt admittance y=j4.5×y=j 4.5 \times 106 S/km10^{-6} \mathrm{~S} / \mathrm{km} . Neglecting losses, calculate: (a) Zc\mathrm{Z}_{c} , (b) (γl)(\gamma l) , (c) the ABCDA B C D parameters, (d) the wavelength λ\lambda of the line, in kilometers, and (e) the surge impedance loading in MW.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
9
Determine the equivalent π circuit for the line in Test Bank Problem 5.8.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
10
Rated line voltage is appliedto the sending end of the line in Test Bank Problem 5.8.Calculate the receiving-end voltage when thereceiving end is terminated by (a) an open circuit, (b) the surge impedance of the line,and (c) one-half of thesurge impedance. (d)Also calculate the theoretical maximum realpower that the line can deliver when rated voltage is applied toboth ends of the line.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
11
The line in Test Bank Problem 5.5 has three ACSR 1113-kcmil conductors per chase.Calculate the theoretical maximum real power that this line can deliver and compare withthe thermal limit of the line. Assume VS-VR=1.0 per unit and unity power factor at thereceiving end.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
12
Repeat Test Bank Problems 5.5 and 5.11 if the line length is (a) 200 km200 \mathrm{~km} and (b) 550 km550 \mathrm{~km} .
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
13
For the line in Test Bank Problems 5.5 and 5.11 , determine (a) the practical line loadability in MW, assuming VS=1.0V_{S}=1.0 per unit, VR0.95V_{R} \approx 0.95 per unit, and δmax=35\delta_{\max }=35^{\circ} ; (b) the full-load current at 0.99 leading power factor, based on the above practical line loadability; (c) the exact receiving-end voltage for the full-load current in (b) above; and (d) the percent voltage regulation. For this line, is loadability determined by the thermal limit, the drop limit, or stead-state stability?
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
14
Determine the practical line loadability in MWand in per unit of SIL for the line in Test Bank Problem 5.5 if the length is(a) 200 km and (b) 600 km. Assume VS = 1.0 per unit, VR =0.95 per unit , δmax=35 \delta_{\max }=35^{\circ} and 0.99 leading power factor at the receiving end.
Unlock Deck
Unlock for access to all 14 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 14 flashcards in this deck.