Deck 16: Data Warehouse Technology and Management

Full screen (f)
exit full mode
Question
Data warehouses have four distinguishing characteristics.Data warehouses are subject-oriented,integrated,time-variant,and volatile.
Use Space or
up arrow
down arrow
to flip the card.
Question
Use of the ROLLUP operator with a GROUP BY clause is appropriate to summarize columns from independent dimensions.
Question
ROLAP (Relational OLAP)and MOLAP (Multidimensional OLAP)are similar in that a data cube is actually built and stored for use with queries.
Question
The two tiered data warehouse architecture incorporates data marts to provide different departments or sections of the organization with faster access while isolating them from data needed by other user groups.
Question
HOLAP (Hybrid OLAP)involves both relational and multidimensional data storage,and can combine data from both of these sources for data cube operations.
Question
In a star schema,dimension tables may violate 3NF but the fact table is usually normalized.
Question
The level of detail and amount of data required to engage in data mining is roughly the same as that needed for traditional data warehouse analysis tools.
Question
At this time,there is no major relational database vendor that provides support for the multidimensional data model used by data warehouses.
Question
Data in a data warehouse is usually normalized to fourth normal form to avoid insert and update anomalies.
Question
An oper mart is a just-in-time data mart,usually built from one operational database in anticipation or in response to major events such as disasters and new product introductions.
Question
Data in a data warehouse is time-variant,which is a critical characteristic for identifying trends,predicting future operations,and setting operating targets.
Question
Time-series data in a data cube may complicate the structure of measures,but it decreases the number of dimensions needed and facilitates the computation of many statistical functions.
Question
A data warehouse refers to a central data repository where data from operational databases and other sources are integrated,cleaned,and standardized to support decision making.The transformational activities (cleaning,integrating,and standardizing)are essential for achieving benefits.
Question
In both query rewriting for materialized views and query modification for traditional views,the query optimizer must evaluate whether the substitution will improve performance over the original query.
Question
Data mining refers to the process of discovering implicit patterns in data and using these patterns for business advantage.
Question
When N is the number of grouped columns,the result of a ROLLUP operation can be produced by using N)additional SELECT statements connected by a UNION operator.
Question
Sparsity in a hypercube indicates the amount of empty cells in the cube,and can be a problem when two or more dimensions are related.
Question
The multidimensional data model is becoming dominant for both operational databases and data warehouses.
Question
When N is the number of grouped columns,the result of a CUBE operation can be produced by using (2*N)- 1 additional SELECT statements connected by a UNION operator.
Question
Because of its advantages over MOLAP and ROLAP,HOLAP is expected to become the dominant storage engine for data warehouses.
Question
Which of the following may result from data warehouse applications?

A) Retention of customers
B) New market identification
C) Inventory cost reduction
D) All of the above
Question
In the two-tier data warehouse architecture:

A) Data access and processing are very fast
B) User departments access the external databases
C) User departments access their own data marts
D) User departments access the data warehouse
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-To have the data for Australia in Table2,you would:

A) Add 4 new rows to Table2
B) Add 1 new row to Table2
C) Add 1 new column to Table2
D) Add 1 new row and one new column to Table2
Question
What is true of hierarchies in a data cube?

A) Without them, the dimension must contain the most detailed level of data
B) They make it easier to compute aggregates across the dimension
C) Dimensions can have multiple hierarchies
D) All of the above
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-To have the data for Australia in Table1,you would:

A) Add 4 new rows to Table1
B) Add 1 new row to Table1
C) Add 1 new column to Table1
D) Add 1 new row and one new column to Table1
Question
Which of the following is not an example of application of data mining?

A) Identify likely buyers of luxury cars
B) Identify customers eligible for a defective car recall
C) Target potential customers of banking products
D) Identify best travel products for an age range
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to add the following capabilities to Table2: show the data for 3 age groups (20-39,40-60,over 60),3 revenue groups (less than $10,000,$10,000-$30,000,over $30,000)and add a new type of account: Money market.The number of dimensions of Table2 will be:

A) 2
B) 3
C) 4
D) 5
Question
In the data warehouse maintenance process,auditing the data to resolve any data quality problems occurs in both the preparation and integration phases.
Question
Which one of the following applications/activities is typical of an operational database?

A) Updating of the inventory data as the sales occur in the supermarket
B) Comparing last year sales with this year sales to identify the most promising products
C) Analyzing customer and sales data over the last two years to establish a correlation between customer purchases and customer age
D) Analyzing this year customer accounts to identify the best customers
Question
Which of the following features usually applies to data in a data warehouse?

A) New data supersede old data
B) New data are appended to old data
C) Update anomalies are common
D) Deletion anomalies are common
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.


-Which of the following statements is true?

A) Table1 contains multidimensional data and Table2 relational data
B) Table1 contains multidimensional data and Table2 multidimensional data
C) Table1 contains relational data and Table2 relational data
D) Table1 contains relational data and Table2 multidimensional data
Question
Data mining typically takes place on:

A) Data warehouses with highly aggregated data
B) Data warehouses that include detailed data
C) Operational databases
D) Highly aggregated data marts
Question
Which of the following features usually applies to data in a data warehouse?

A) Data are very detailed
B) Data are shown by process orientation
C) There is a high level of data redundancy
D) Data updates are very frequent
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to have the data for the past five years in Table1.This would require:

A) Adding one column
B) Adding one column and 3 rows
C) Adding one column and 15 rows
D) Adding one column and more than 15 rows
Question
Which one of the following applications/activities is typical of a data warehouse?

A) Updating of the inventory data as the sales occur in the supermarket
B) Comparing last year sales with this year sales to identify the most promising product
C) Looking at sales this month to identify the most valuable salesperson of the month
D) Reviewing last month customer accounts to prepare overdue notices
Question
The following is typical of many three-tier data warehouses:

A) Data marts are under the control of user departments
B) The data warehouse is under corporate control
C) The data marts and the data warehouse reside on different servers
D) All of the above
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to have the data for the past five years in Table2.This would require:

A) Adding one column
B) Adding one column and 1 row
C) Adding a new dimension
D) Adding 5 columns and 1 row
Question
In a bottom-up data warehouse architecture:

A) Once the initial data marts have been built, no new data marts will be created
B) The data marts may ultimately evolve into one data warehouse
C) The data warehouse built from initial data marts does not change over time
D) None of the above
Question
When dimension tables are updated,overwriting the old values with the changed data is one way to maintain the historical integrity of the data warehouse.
Question
In data warehouse maintenance,the workflow phases of preparation,integration and update are performed in the initial data load,and also in the subsequent periodic refreshments of the data warehouse.
Question
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim contains how many hierarchies?

A) 1
B) 3
C) 6
D) None of the above
Question
An organization that does not want to take the time to develop an EDM sometimes uses a(n)_________________ architecture for data warehousing by modeling one entity at a time and storing them in separate data marts.
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to add the following capabilities to Table2: show the data for 3 age groups (20-39,40-60,over 60),3 revenue groups (less than $10,000,$10,000-$30,000,over $30,000)and add a new type of account: Money market.The Types of account are either government-insured (checking,savings)or non-government-insured (Money Market,Mutual Funds).This latest requirement creates:

A) Sparsity
B) Classes
C) Hierarchies
D) All of the above
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We have added the following capability to Table2: showing the data for 3 age groups (20-39,40-60,over 60)as a third dimension.Showing the data for age group 40-60 is called:

A) Slice
B) Dice
C) Drill-Down
D) Roll-up
Question
______________ is the process of discovering implicit data patterns in the data of a data warehouse,and using those patterns for business advantage.
Question
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim contains how many levels?

A) 1
B) 3
C) 6
D) None of the above
Question
In maintaining a data warehouse,which of the following is not a task in the preparation phase:

A) Extraction
B) Merging
C) Transportation
D) Cleaning
Question
A subset of a data warehouse,typically at a department level,that acts as an interface between the end users and the corporate data warehouse is called a(n)___________________.
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-In Table2,we show the "location" as columns and the "type of account" as rows.This is called:

A) Slice
B) Dice
C) Drill-Down
D) Pivot
Question
A(n)_______________________ is a conceptual data model of a data warehouse which defines the structure of the data warehouse and the metadata to access the operational databases and external data sources.
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We have added the following capability to Table2: showing the data for 3 age groups (20-39,40-60,over 60)as a third dimension.Showing the data for age groups 20-39 and 40-60 is called:

A) Slice
B) Dice
C) Drill-Down
D) Roll-up
Question
In a(n)______________ data warehouse architecture,operational data are transformed and loaded into the data warehouse,which is accessed directly by the user departments.
Question
Which of the following statements is not true about populating a data warehouse:

A) It involves matching decision support needs with available data
B) It is a matter of simply copying data from various sources
C) Sources of data may be internal or external or both
D) All of the above
Question
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim gets data from how many tables?

A) 1
B) 2
C) 3
D) None of the above
Question
The ATTRIBUTE clause:

A) Defines a functional dependency between a dimension level and a non-source column
B) Specifies a constraint of the dimension
C) Both of the above
D) None of the above
Question
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We add the following two dimensions to Table2: age groups (20-39,40-60,over 60)and revenue groups (less than $10,000,$10,000-$30,000,over $30,000).The star schema consists of the following number of tables:

A) 2
B) 3
C) 4
D) 5
Question
A(n)____________________ is a just-in-time data mart usually built from one operational database in response to a major event.
Question
A(n)___________________ is a multidimensional format sometimes known as a hypercube,because conceptually it could have an infinite number of dimensions.
Question
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim gets data from how many columns of the source table Store?

A) 1
B) 5
C) 6
D) None of the above
Question
A central repository for summarized and integrated data from operational databases and external sources,used to support decision making is a(n)___________________.
Question
In refreshing a data warehouse,________________ change data involves notification from a source system,and typically occurs after a transaction is completed using a trigger.
Question
______________ indicates the extent of empty cells in a data cube.
Question
A stored view created to provide fast response for queries involving large fact tables is a(n)____________________ view.
Question
One of the decision support operations that can be performed on a data cube is the _______________ operation,which allows users to navigate from a specific level of a hierarchical dimension to a more general level.
Question
A ___________ is a storage engine that directly stores and manipulates data cubes.___________ engines generally offer the best query performance but place limits on the size of data cubes.
Question
One of the decision support operations that can be performed on a data cube is the _______________ operation,in which one or more dimensions are set to specific values and the remaining data cube is displayed.
Question
One of the decision support operations that can be performed on a data cube is the _______________ operation,which allows users to navigate from a more general level of a hierarchical dimension to a more specific level.
Question
Numeric values such as unit sales dollars contained in the cells of a data cube are known as ______________.
Question
The subjects that data are grouped by in a data cube are known as ____________________.
Question
One of the decision support operations that can be performed on a data cube is the _______________ operation,which rearranges the dimensions in a data cube so that the data can be presented in a more visually appealing order.
Question
In refreshing a data warehouse,________________ change data involves files that record changes or other user activity.
Question
__________________ is a substitution process that replaces references to fact and dimension tables with a materialized view.
Question
A multidimensional data model used in relational databases that has multiple fact tables in the center linked to multiple dimension tables,some of which are shared by the fact tables,is known as a(n)_____________________ schema.
Question
Vendors of relational DBMSs have extended their products with additional features to support operations and storage structures for multidimensional data.These product extensions are collectively known as _________._________ engines support a variety of storage and optimization techniques for summary data retrieval.
Question
A multidimensional data model used in relational databases that has a fact table in the center linked in a radial manner to multiple dimension tables is known as a(n)_____________________ schema.
Question
The _____________ operator is an extension of the SQL GROUP BY clause that produces all combinations of subtotals in addition to the normal totals.
Question
A multidimensional data model used in relational databases that has multiple levels of dimension tables related to one or more fact tables is known as a(n)_____________________ schema.
Question
In refreshing a data warehouse,________________ change data involves a periodic dump of source data which is compared using a difference operation to the previous dump.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/78
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 16: Data Warehouse Technology and Management
1
Data warehouses have four distinguishing characteristics.Data warehouses are subject-oriented,integrated,time-variant,and volatile.
False
Explanation: Data warehouses are nonvolatile.
2
Use of the ROLLUP operator with a GROUP BY clause is appropriate to summarize columns from independent dimensions.
False
Explanation: Use of the CUBE operator with a GROUP BY clause is appropriate to summarize columns from independent dimensions.
3
ROLAP (Relational OLAP)and MOLAP (Multidimensional OLAP)are similar in that a data cube is actually built and stored for use with queries.
False
Explanation: With MOLAP, virtual data cubes are dynamically built as needed.
4
The two tiered data warehouse architecture incorporates data marts to provide different departments or sections of the organization with faster access while isolating them from data needed by other user groups.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
5
HOLAP (Hybrid OLAP)involves both relational and multidimensional data storage,and can combine data from both of these sources for data cube operations.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
6
In a star schema,dimension tables may violate 3NF but the fact table is usually normalized.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
7
The level of detail and amount of data required to engage in data mining is roughly the same as that needed for traditional data warehouse analysis tools.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
8
At this time,there is no major relational database vendor that provides support for the multidimensional data model used by data warehouses.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
9
Data in a data warehouse is usually normalized to fourth normal form to avoid insert and update anomalies.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
10
An oper mart is a just-in-time data mart,usually built from one operational database in anticipation or in response to major events such as disasters and new product introductions.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
11
Data in a data warehouse is time-variant,which is a critical characteristic for identifying trends,predicting future operations,and setting operating targets.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
12
Time-series data in a data cube may complicate the structure of measures,but it decreases the number of dimensions needed and facilitates the computation of many statistical functions.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
13
A data warehouse refers to a central data repository where data from operational databases and other sources are integrated,cleaned,and standardized to support decision making.The transformational activities (cleaning,integrating,and standardizing)are essential for achieving benefits.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
14
In both query rewriting for materialized views and query modification for traditional views,the query optimizer must evaluate whether the substitution will improve performance over the original query.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
15
Data mining refers to the process of discovering implicit patterns in data and using these patterns for business advantage.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
16
When N is the number of grouped columns,the result of a ROLLUP operation can be produced by using N)additional SELECT statements connected by a UNION operator.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
17
Sparsity in a hypercube indicates the amount of empty cells in the cube,and can be a problem when two or more dimensions are related.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
18
The multidimensional data model is becoming dominant for both operational databases and data warehouses.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
19
When N is the number of grouped columns,the result of a CUBE operation can be produced by using (2*N)- 1 additional SELECT statements connected by a UNION operator.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
20
Because of its advantages over MOLAP and ROLAP,HOLAP is expected to become the dominant storage engine for data warehouses.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
21
Which of the following may result from data warehouse applications?

A) Retention of customers
B) New market identification
C) Inventory cost reduction
D) All of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
22
In the two-tier data warehouse architecture:

A) Data access and processing are very fast
B) User departments access the external databases
C) User departments access their own data marts
D) User departments access the data warehouse
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
23
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-To have the data for Australia in Table2,you would:

A) Add 4 new rows to Table2
B) Add 1 new row to Table2
C) Add 1 new column to Table2
D) Add 1 new row and one new column to Table2
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
24
What is true of hierarchies in a data cube?

A) Without them, the dimension must contain the most detailed level of data
B) They make it easier to compute aggregates across the dimension
C) Dimensions can have multiple hierarchies
D) All of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
25
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-To have the data for Australia in Table1,you would:

A) Add 4 new rows to Table1
B) Add 1 new row to Table1
C) Add 1 new column to Table1
D) Add 1 new row and one new column to Table1
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
26
Which of the following is not an example of application of data mining?

A) Identify likely buyers of luxury cars
B) Identify customers eligible for a defective car recall
C) Target potential customers of banking products
D) Identify best travel products for an age range
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
27
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to add the following capabilities to Table2: show the data for 3 age groups (20-39,40-60,over 60),3 revenue groups (less than $10,000,$10,000-$30,000,over $30,000)and add a new type of account: Money market.The number of dimensions of Table2 will be:

A) 2
B) 3
C) 4
D) 5
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
28
In the data warehouse maintenance process,auditing the data to resolve any data quality problems occurs in both the preparation and integration phases.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
29
Which one of the following applications/activities is typical of an operational database?

A) Updating of the inventory data as the sales occur in the supermarket
B) Comparing last year sales with this year sales to identify the most promising products
C) Analyzing customer and sales data over the last two years to establish a correlation between customer purchases and customer age
D) Analyzing this year customer accounts to identify the best customers
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
30
Which of the following features usually applies to data in a data warehouse?

A) New data supersede old data
B) New data are appended to old data
C) Update anomalies are common
D) Deletion anomalies are common
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
31
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.


-Which of the following statements is true?

A) Table1 contains multidimensional data and Table2 relational data
B) Table1 contains multidimensional data and Table2 multidimensional data
C) Table1 contains relational data and Table2 relational data
D) Table1 contains relational data and Table2 multidimensional data
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
32
Data mining typically takes place on:

A) Data warehouses with highly aggregated data
B) Data warehouses that include detailed data
C) Operational databases
D) Highly aggregated data marts
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
33
Which of the following features usually applies to data in a data warehouse?

A) Data are very detailed
B) Data are shown by process orientation
C) There is a high level of data redundancy
D) Data updates are very frequent
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
34
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to have the data for the past five years in Table1.This would require:

A) Adding one column
B) Adding one column and 3 rows
C) Adding one column and 15 rows
D) Adding one column and more than 15 rows
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
35
Which one of the following applications/activities is typical of a data warehouse?

A) Updating of the inventory data as the sales occur in the supermarket
B) Comparing last year sales with this year sales to identify the most promising product
C) Looking at sales this month to identify the most valuable salesperson of the month
D) Reviewing last month customer accounts to prepare overdue notices
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
36
The following is typical of many three-tier data warehouses:

A) Data marts are under the control of user departments
B) The data warehouse is under corporate control
C) The data marts and the data warehouse reside on different servers
D) All of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
37
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to have the data for the past five years in Table2.This would require:

A) Adding one column
B) Adding one column and 1 row
C) Adding a new dimension
D) Adding 5 columns and 1 row
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
38
In a bottom-up data warehouse architecture:

A) Once the initial data marts have been built, no new data marts will be created
B) The data marts may ultimately evolve into one data warehouse
C) The data warehouse built from initial data marts does not change over time
D) None of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
39
When dimension tables are updated,overwriting the old values with the changed data is one way to maintain the historical integrity of the data warehouse.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
40
In data warehouse maintenance,the workflow phases of preparation,integration and update are performed in the initial data load,and also in the subsequent periodic refreshments of the data warehouse.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
41
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim contains how many hierarchies?

A) 1
B) 3
C) 6
D) None of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
42
An organization that does not want to take the time to develop an EDM sometimes uses a(n)_________________ architecture for data warehousing by modeling one entity at a time and storing them in separate data marts.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
43
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We want to add the following capabilities to Table2: show the data for 3 age groups (20-39,40-60,over 60),3 revenue groups (less than $10,000,$10,000-$30,000,over $30,000)and add a new type of account: Money market.The Types of account are either government-insured (checking,savings)or non-government-insured (Money Market,Mutual Funds).This latest requirement creates:

A) Sparsity
B) Classes
C) Hierarchies
D) All of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
44
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We have added the following capability to Table2: showing the data for 3 age groups (20-39,40-60,over 60)as a third dimension.Showing the data for age group 40-60 is called:

A) Slice
B) Dice
C) Drill-Down
D) Roll-up
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
45
______________ is the process of discovering implicit data patterns in the data of a data warehouse,and using those patterns for business advantage.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
46
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim contains how many levels?

A) 1
B) 3
C) 6
D) None of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
47
In maintaining a data warehouse,which of the following is not a task in the preparation phase:

A) Extraction
B) Merging
C) Transportation
D) Cleaning
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
48
A subset of a data warehouse,typically at a department level,that acts as an interface between the end users and the corporate data warehouse is called a(n)___________________.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
49
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-In Table2,we show the "location" as columns and the "type of account" as rows.This is called:

A) Slice
B) Dice
C) Drill-Down
D) Pivot
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
50
A(n)_______________________ is a conceptual data model of a data warehouse which defines the structure of the data warehouse and the metadata to access the operational databases and external data sources.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
51
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We have added the following capability to Table2: showing the data for 3 age groups (20-39,40-60,over 60)as a third dimension.Showing the data for age groups 20-39 and 40-60 is called:

A) Slice
B) Dice
C) Drill-Down
D) Roll-up
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
52
In a(n)______________ data warehouse architecture,operational data are transformed and loaded into the data warehouse,which is accessed directly by the user departments.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
53
Which of the following statements is not true about populating a data warehouse:

A) It involves matching decision support needs with available data
B) It is a matter of simply copying data from various sources
C) Sources of data may be internal or external or both
D) All of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
54
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim gets data from how many tables?

A) 1
B) 2
C) 3
D) None of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
55
The ATTRIBUTE clause:

A) Defines a functional dependency between a dimension level and a non-source column
B) Specifies a constraint of the dimension
C) Both of the above
D) None of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
56
Figure:
Table1
 Bank product  Location  Number-of-customers  Checking  USA 1,000,000 Checking  Europe 500,000 Checking  SE Asia 1,100,000 Checking  India 300,000 Savings  USA 700,000 Savings  Europe 400,000 Savings  SE Asia 900,000 Savings  India 800,000 Mutual funds  USA 300,000 Mutual funds  Europe  Mutual funds  SE Asia 300,000 Mutual funds  India 80,000\begin{array} { | l | l | l | } \hline \text { Bank product } & \text { Location } & \text { Number-of-customers } \\\hline \text { Checking } & \text { USA } & 1,000,000 \\\hline \text { Checking } & \text { Europe } & 500,000 \\\hline \text { Checking } & \text { SE Asia } & 1,100,000 \\\hline \text { Checking } & \text { India } & 300,000 \\\hline \text { Savings } & \text { USA } & 700,000 \\\hline \text { Savings } & \text { Europe } & 400,000 \\\hline \text { Savings } & \text { SE Asia } & 900,000 \\\hline \text { Savings } & \text { India } & 800,000 \\\hline \text { Mutual funds } & \text { USA } & 300,000 \\\hline \text { Mutual funds } & \text { Europe } & \\\hline \text { Mutual funds } & \text { SE Asia } & 300,000 \\\hline \text { Mutual funds } & \text { India } & 80,000 \\\hline\end{array}
Table2
 Location  Checking  Savings  Mutual Funds  USA 1,000,000700,000300,000 Europe 500,000400,000200,000 SE Asia 1,100,000900,000300,000 India \begin{array} { | l | l | l | l | } \hline \text { Location } & \text { Checking } & \text { Savings } & \text { Mutual Funds } \\\hline \text { USA } & 1,000,000 & 700,000 & 300,000 \\\hline \text { Europe } & 500,000 & 400,000 & 200,000 \\\hline \text { SE Asia } & 1,100,000 & 900,000 & 300,000 \\\hline \text { India } & & & \\\hline\end{array}
The numeric values in Table2 indicate the number of customers.

-We add the following two dimensions to Table2: age groups (20-39,40-60,over 60)and revenue groups (less than $10,000,$10,000-$30,000,over $30,000).The star schema consists of the following number of tables:

A) 2
B) 3
C) 4
D) 5
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
57
A(n)____________________ is a just-in-time data mart usually built from one operational database in response to a major event.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
58
A(n)___________________ is a multidimensional format sometimes known as a hypercube,because conceptually it could have an infinite number of dimensions.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
59
Figuer: (Oracle)
CREATE DIMENSION StoreDim
LEVEL StoreID IS Store. StoreID
LEVEL City IS Store. StoreCity
LEVEL State IS Store. StoreState
LEVEL Zap IS Store.StoreZip
LEVEL Nation IS Store. StoreNation
LEVEL DivID IS Division. DivID
HIERARCHY CityRollup (
StoreID CHILD OF
City CHILD OF
State CHILD OF
Nation )
HIERARCHY ZipRollup
StoreID CHILD OF
Zip CHILD OF
State CHILD OF
Nation )
HIERARCHY DivisionRollup (
StoreID CHILD OF
DivID
JOIN KEY Store.DivID REFERENCES DivID )
ATTRIBUTE DivID DETERMINES Division. DivName
ATTRIBUTE DivID DETERMINES Division. DivManager;

-The dimension StoreDim gets data from how many columns of the source table Store?

A) 1
B) 5
C) 6
D) None of the above
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
60
A central repository for summarized and integrated data from operational databases and external sources,used to support decision making is a(n)___________________.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
61
In refreshing a data warehouse,________________ change data involves notification from a source system,and typically occurs after a transaction is completed using a trigger.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
62
______________ indicates the extent of empty cells in a data cube.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
63
A stored view created to provide fast response for queries involving large fact tables is a(n)____________________ view.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
64
One of the decision support operations that can be performed on a data cube is the _______________ operation,which allows users to navigate from a specific level of a hierarchical dimension to a more general level.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
65
A ___________ is a storage engine that directly stores and manipulates data cubes.___________ engines generally offer the best query performance but place limits on the size of data cubes.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
66
One of the decision support operations that can be performed on a data cube is the _______________ operation,in which one or more dimensions are set to specific values and the remaining data cube is displayed.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
67
One of the decision support operations that can be performed on a data cube is the _______________ operation,which allows users to navigate from a more general level of a hierarchical dimension to a more specific level.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
68
Numeric values such as unit sales dollars contained in the cells of a data cube are known as ______________.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
69
The subjects that data are grouped by in a data cube are known as ____________________.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
70
One of the decision support operations that can be performed on a data cube is the _______________ operation,which rearranges the dimensions in a data cube so that the data can be presented in a more visually appealing order.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
71
In refreshing a data warehouse,________________ change data involves files that record changes or other user activity.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
72
__________________ is a substitution process that replaces references to fact and dimension tables with a materialized view.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
73
A multidimensional data model used in relational databases that has multiple fact tables in the center linked to multiple dimension tables,some of which are shared by the fact tables,is known as a(n)_____________________ schema.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
74
Vendors of relational DBMSs have extended their products with additional features to support operations and storage structures for multidimensional data.These product extensions are collectively known as _________._________ engines support a variety of storage and optimization techniques for summary data retrieval.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
75
A multidimensional data model used in relational databases that has a fact table in the center linked in a radial manner to multiple dimension tables is known as a(n)_____________________ schema.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
76
The _____________ operator is an extension of the SQL GROUP BY clause that produces all combinations of subtotals in addition to the normal totals.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
77
A multidimensional data model used in relational databases that has multiple levels of dimension tables related to one or more fact tables is known as a(n)_____________________ schema.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
78
In refreshing a data warehouse,________________ change data involves a periodic dump of source data which is compared using a difference operation to the previous dump.
Unlock Deck
Unlock for access to all 78 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 78 flashcards in this deck.