Deck 9: Analytical Trigonometry

Full screen (f)
exit full mode
Question
Convert the expression into a product. Simplify where possible. cos3π8sinπ8\cos \frac { 3 \pi } { 8 } - \sin \frac { \pi } { 8 } (Hint: Use the identity cosθ=sin(π2θ)\cos \theta = \sin \left( \frac { \pi } { 2 } - \theta \right) .)

A) 22\frac { \sqrt { 2 } } { 2 }
B) 1/2
C) 1
D) 0
E) 32\frac { \sqrt { 3 } } { 2 }
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the addition formulas for sine and cosine to simplify the expression. sin54cos24cos54sin24\sin 54 ^ { \circ } \cos 24 ^ { \circ } - \cos 54 ^ { \circ } \sin 24 ^ { \circ }

A) 22\frac { \sqrt { 2 } } { 2 }
B) 1/2
C) 0
D) 1
E) 32\frac { \sqrt { 3 } } { 2 }
Question
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cosπ5cos4π5\cos \frac { \pi } { 5 } \cos \frac { 4 \pi } { 5 }

A) 12(cos3π5+1)\frac { 1 } { 2 } \left( \cos \frac { 3 \pi } { 5 } + 1 \right)
B) 12(cos3π51)\frac { 1 } { 2 } \left( \cos \frac { 3 \pi } { 5 } - 1 \right)
C) 1+sin2π51 + \sin ^ { 2 } \frac { \pi } { 5 }
D) 12sin3π5- \frac { 1 } { 2 } \sin \frac { 3 \pi } { 5 }
E) 1sin2π51 - \sin ^ { 2 } \frac { \pi } { 5 }
Question
Refer to the triangle and compute tan(t2)\tan \left( \frac { t } { 2 } \right) .  <strong>Refer to the triangle and compute  \tan \left( \frac { t } { 2 } \right)  .  </strong> A) 1/5 B)  \frac { 5 \sqrt { 13 } } { 26 }  C)  \frac { \sqrt { 6 } } { 26 }  D) 1/8 E)  \frac { \sqrt { 26 } } { 26 }  <div style=padding-top: 35px>

A) 1/5
B) 51326\frac { 5 \sqrt { 13 } } { 26 }
C) 626\frac { \sqrt { 6 } } { 26 }
D) 1/8
E) 2626\frac { \sqrt { 26 } } { 26 }
Question
Compute sin(αβ)\sin ( \alpha - \beta ) and cos(αβ)\cos ( \alpha - \beta ) using the data below. sinα=1213 where π2<α<π\sin \alpha = \frac { 12 } { 13 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosβ=1517 where π<β<3π2\cos \beta = - \frac { 15 } { 17 } \quad \text { where } \pi < \beta < \frac { 3 \pi } { 2 }

A) sin(αβ)=140221\sin ( \alpha - \beta ) = \frac { 140 } { 221 } cos(αβ)=171221\cos ( \alpha - \beta ) = - \frac { 171 } { 221 }
B) sin(αβ)=220221\sin ( \alpha - \beta ) = - \frac { 220 } { 221 } cos(αβ)=21221\cos ( \alpha - \beta ) = - \frac { 21 } { 221 }
C) sin(αβ)=171221\sin ( \alpha - \beta ) = - \frac { 171 } { 221 } cos(αβ)=140221\cos ( \alpha - \beta ) = \frac { 140 } { 221 }
D) sin(αβ)=220221\sin ( \alpha - \beta ) = \frac { 220 } { 221 } cos(αβ)=21221\cos ( \alpha - \beta ) = - \frac { 21 } { 221 }
E) sin(αβ)=21221\sin ( \alpha - \beta ) = - \frac { 21 } { 221 } cos(αβ)=220221\cos ( \alpha - \beta ) = - \frac { 220 } { 221 }
Question
Use the given information to compute cos(θ2)\cos \left( \frac { \theta } { 2 } \right) . sinθ=18\sin \theta = - \frac { 1 } { 8 } and 180<θ<270180 ^ { \circ } < \theta < 270 ^ { \circ }

A) 3105- \frac { 3 \sqrt { 10 } } { 5 }
B) 3614\frac { 3 \sqrt { 6 } } { 14 }
C) 8374- \frac { \sqrt { 8 - 3 \sqrt { 7 } } } { 4 }
D) 5+373- \frac { \sqrt { 5 + 3 \sqrt { 7 } } } { 3 }
E) 53103\frac { \sqrt { 5 - 3 \sqrt { 10 } } } { 3 }
Question
Use the given information to compute cos(θ2)\cos \left( \frac { \theta } { 2 } \right) . cosθ=47\cos \theta = \frac { 4 } { 7 } and 3π2<θ<2π\frac { 3 \pi } { 2 } < \theta < 2 \pi

A) 1415- \frac { 14 } { 15 }
B) 15414- \frac { \sqrt { 154 } } { 14 }
C) 14314\frac { \sqrt { 143 } } { 14 }
D) 4/15
E) 7715\frac { \sqrt { 77 } } { 15 }
Question
Determine all of the solutions in the interval 0θ1800 ^ { \circ } \leq \theta \leq 180 ^ { \circ } . tan2θ=33\tan 2 \theta = - \frac { \sqrt { 3 } } { 3 }

A) θ75\theta \approx 75 ^ { \circ } , and θ105\theta \approx 105 ^ { \circ }
B) θ195\theta \approx 195 ^ { \circ } , and θ165\theta \approx 165 ^ { \circ }
C) θ75\theta \approx 75 ^ { \circ } , and θ165\theta \approx 165 ^ { \circ }
D) θ15\theta \approx 15 ^ { \circ } , and θ105\theta \approx 105 ^ { \circ }
E) θ150\theta \approx 150 ^ { \circ } , and θ330\theta \approx 330 ^ { \circ }
F) θ195,andθ285\theta \approx 195 ^ { \circ } \quad, and \quad \theta \approx 285 ^ { \circ }

G) no solution.
Question
Find the right side of the identity. sins+sintsins+sint=?\frac { \sin s + \sin t } { \sin s + \sin t } = ?

A) tan(s+t2)\tan \left( \frac { s + t } { 2 } \right)
B) tan(st)\tan ( s - t )
C) sin(s+t)\sin ( s + t )
D) cot(s+t2)\cot \left( \frac { s + t } { 2 } \right)
E) tan(st2)\tan \left( \frac { s - t } { 2 } \right)
Question
Is t=π3t = \frac { \pi } { 3 } a solution of 2sint+2cost=312 \sin t + 2 \cos t = \sqrt { 3 } - 1 ?
Question
Refer to the triangle and compute sin2s\sin 2 s .  <strong>Refer to the triangle and compute  \sin 2 s  .  </strong> A)  \frac { 120 } { 169 }  B)  - \frac { 245 } { 389 }  C)  \frac { 201 } { 389 }  D)  - \frac { 119 } { 169 }  E)  - \frac { 119 } { 120 }  <div style=padding-top: 35px>

A) 120169\frac { 120 } { 169 }
B) 245389- \frac { 245 } { 389 }
C) 201389\frac { 201 } { 389 }
D) 119169- \frac { 119 } { 169 }
E) 119120- \frac { 119 } { 120 }
Question
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cos47cos43\cos 47 ^ { \circ } \cos 43 ^ { \circ }

A) 12(1+sin4)\frac { 1 } { 2 } \left( 1 + \sin 4 ^ { \circ } \right)
B) 2cos2\sqrt { 2 } \cos 2 ^ { \circ }
C) 12cos4\frac { 1 } { 2 } \cos 4 ^ { \circ }
D) 12cos4- \frac { 1 } { 2 } \cos 4 ^ { \circ }
E) 12(1sin4)\frac { 1 } { 2 } \left( 1 - \sin 4 ^ { \circ } \right)
Question
Use the addition formulas for tangent to simplify the expression. tan2π7tan5π421+tan2π7tan5π42\frac { \tan \frac { 2 \pi } { 7 } - \tan \frac { 5 \pi } { 42 } } { 1 + \tan \frac { 2 \pi } { 7 } \tan \frac { 5 \pi } { 42 } }

A) 2\sqrt { 2 }
B) 33\frac { \sqrt { 3 } } { 3 }
C) 3\sqrt { 3 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 1
Question
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cos5π12cosπ12\cos \frac { 5 \pi } { 12 } \cos \frac { \pi } { 12 }

A) 0
B) -1/4
C) -1/2
D) 1/4
E) 1/2
Question
Use the following information to evaluate the expression. cosθ=1213(3π2<θ<2π)\cos \theta = \frac { 12 } { 13 } \quad \left( \frac { 3 \pi } { 2 } < \theta < 2 \pi \right) tan(θ2)=?\tan \left( \frac { \theta } { 2 } \right) = ?

A) 1713- \frac { \sqrt { 17 } } { 13 }
B) 1112\frac { \sqrt { 11 } } { 12 }
C) 8/7
D) -1/3
E) -1/5
Question
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. sin125sin5\sin 125 ^ { \circ } \sin 5 ^ { \circ }

A) 12sin13034\frac { 1 } { 2 } \sin 130 ^ { \circ } - \frac { \sqrt { 3 } } { 4 }
B) 1412cos130- \frac { 1 } { 4 } - \frac { 1 } { 2 } \cos 130 ^ { \circ }
C) 12sin130+34\frac { 1 } { 2 } \sin 130 ^ { \circ } + \frac { \sqrt { 3 } } { 4 }
D) 3cos65\sqrt { 3 } \cos 65 ^ { \circ }
E) 12cos13014\frac { 1 } { 2 } \cos 130 ^ { \circ } - \frac { 1 } { 4 }
Question
Use the addition formulas for sine and cosine to simplify the expression. cos(θπ3)+cos(θ+π3)\cos \left( \theta - \frac { \pi } { 3 } \right) + \cos \left( \theta + \frac { \pi } { 3 } \right)

A) 3\sqrt { 3 } cosθ\cos \theta
B) cosθ\cos \theta
C) 13cosθ\frac { 1 } { 3 } \cos \theta
D) 0
E) 3 cosθ\cos \theta
Question
Use the given information to compute tan(s+t)\tan ( s + t ) and tan(st)\tan ( s - t ) . tans=5\tan s = 5 and tant=4\tan t = 4

A) tan(s+t)=919\tan ( s + t ) = - \frac { 9 } { 19 } tan(st)=121\tan ( s - t ) = \frac { 1 } { 21 }
B) tan(s+t)=121\tan ( s + t ) = - \frac { 1 } { 21 } tan(st)=919\tan ( s - t ) = \frac { 9 } { 19 }
C) tan(s+t)=199\tan ( s + t ) = - \frac { 19 } { 9 } tan(st)=211\tan ( s - t ) = \frac { 21 } { 1 }
D) tan(s+t)=56\tan ( s + t ) = \frac { 5 } { 6 } tan(st)=56\tan ( s - t ) = - \frac { 5 } { 6 }
E) tan(s+t)=211\tan ( s + t ) = - \frac { 21 } { 1 } tan(st)=199\tan ( s - t ) = \frac { 19 } { 9 }
Question
Use the formula for sin(st)\sin ( s - t ) to compute the exact value of sinπ12\sin \frac { \pi } { 12 } .

A) 6+24\frac { \sqrt { 6 } + \sqrt { 2 } } { 4 }
B) 324\frac { \sqrt { 3 } - \sqrt { 2 } } { 4 }
C) 3+24\frac { \sqrt { 3 } + \sqrt { 2 } } { 4 }
D) 624\frac { \sqrt { 6 } - \sqrt { 2 } } { 4 }
E) 34\frac { \sqrt { 3 } } { 4 }
Question
Compute cos(α+θ)\cos ( \alpha + \theta ) and cos(αθ)\cos ( \alpha - \theta ) using the data below. sinα=35 where π2<α<π\sin \alpha = \frac { 3 } { 5 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosθ=513 where 2π<θ<3π2\cos \theta = \frac { 5 } { 13 } \quad \text { where } - 2 \pi < \theta < - \frac { 3 \pi } { 2 }

A) cos(α+θ)=21221\cos ( \alpha + \theta ) = \frac { 21 } { 221 } cos(αθ)=171221\cos ( \alpha - \theta ) = - \frac { 171 } { 221 }
B) cos(α+θ)=5665cos(αθ)=1665\cos ( \alpha + \theta ) = - \frac { 56 } { 65 } \cos ( \alpha - \theta ) = \frac { 16 } { 65 }
C) cos(α+θ)=1665\cos ( \alpha + \theta ) = \frac { 16 } { 65 } cos(αθ)=5665\cos ( \alpha - \theta ) = - \frac { 56 } { 65 }
D) cos(α+θ)=5665\cos ( \alpha + \theta ) = \frac { 56 } { 65 } cos(αθ)=1665\cos ( \alpha - \theta ) = \frac { 16 } { 65 }
E) cos(α+θ)=171221\cos ( \alpha + \theta ) = - \frac { 171 } { 221 } cos(αθ)=21221\cos ( \alpha - \theta ) = \frac { 21 } { 221 }
Question
Evaluate the quantity that is defined, but do not use a calculator or tables. arcsin(12)\arcsin \left( - \frac { 1 } { 2 } \right)

A) -π/4
B) -π/3
C) -π/2
D) π/4
E) -π/6
Question
Evaluate the quantity without using a calculator or tables. tan(arccos1213)\tan \left( \arccos \frac { 12 } { 13 } \right)

A) 1213\frac { 12 } { 13 }
B) 512\frac { 5 } { 12 }
C) 513\frac { 5 } { 13 }
D) 1312\frac { 13 } { 12 }
E) 135\frac { 13 } { 5 }
Question
Evaluate the given quantity, but do not use a calculator or table. cos1(12)\cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right)

A) π
B) π2\frac { \pi } { 2 }
C) 0
D) π3\frac { \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
Question
Evaluate the quantity without using a calculator or tables. sin(tan1(1))\sin \left( \tan ^ { - 1 } ( - 1 ) \right)

A) 00
B) 22- \frac { \sqrt { 2 } } { 2 }
C) 22\frac { \sqrt { 2 } } { 2 }
D) 2\sqrt { 2 }
E) 2- \sqrt { 2 }
Question
Evaluate the quantity without using a calculator or tables. cos(arctan13)\cos \left( \arctan \frac { 1 } { \sqrt { 3 } } \right)

A) 1/2
B) 32\frac { \sqrt { 3 } } { 2 }
C) 32- \frac { \sqrt { 3 } } { 2 }
D) -1/2
E) 33\frac { \sqrt { 3 } } { 3 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Analytical Trigonometry
1
Convert the expression into a product. Simplify where possible. cos3π8sinπ8\cos \frac { 3 \pi } { 8 } - \sin \frac { \pi } { 8 } (Hint: Use the identity cosθ=sin(π2θ)\cos \theta = \sin \left( \frac { \pi } { 2 } - \theta \right) .)

A) 22\frac { \sqrt { 2 } } { 2 }
B) 1/2
C) 1
D) 0
E) 32\frac { \sqrt { 3 } } { 2 }
0
2
Use the addition formulas for sine and cosine to simplify the expression. sin54cos24cos54sin24\sin 54 ^ { \circ } \cos 24 ^ { \circ } - \cos 54 ^ { \circ } \sin 24 ^ { \circ }

A) 22\frac { \sqrt { 2 } } { 2 }
B) 1/2
C) 0
D) 1
E) 32\frac { \sqrt { 3 } } { 2 }
1/2
3
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cosπ5cos4π5\cos \frac { \pi } { 5 } \cos \frac { 4 \pi } { 5 }

A) 12(cos3π5+1)\frac { 1 } { 2 } \left( \cos \frac { 3 \pi } { 5 } + 1 \right)
B) 12(cos3π51)\frac { 1 } { 2 } \left( \cos \frac { 3 \pi } { 5 } - 1 \right)
C) 1+sin2π51 + \sin ^ { 2 } \frac { \pi } { 5 }
D) 12sin3π5- \frac { 1 } { 2 } \sin \frac { 3 \pi } { 5 }
E) 1sin2π51 - \sin ^ { 2 } \frac { \pi } { 5 }
12(cos3π51)\frac { 1 } { 2 } \left( \cos \frac { 3 \pi } { 5 } - 1 \right)
4
Refer to the triangle and compute tan(t2)\tan \left( \frac { t } { 2 } \right) .  <strong>Refer to the triangle and compute  \tan \left( \frac { t } { 2 } \right)  .  </strong> A) 1/5 B)  \frac { 5 \sqrt { 13 } } { 26 }  C)  \frac { \sqrt { 6 } } { 26 }  D) 1/8 E)  \frac { \sqrt { 26 } } { 26 }

A) 1/5
B) 51326\frac { 5 \sqrt { 13 } } { 26 }
C) 626\frac { \sqrt { 6 } } { 26 }
D) 1/8
E) 2626\frac { \sqrt { 26 } } { 26 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
Compute sin(αβ)\sin ( \alpha - \beta ) and cos(αβ)\cos ( \alpha - \beta ) using the data below. sinα=1213 where π2<α<π\sin \alpha = \frac { 12 } { 13 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosβ=1517 where π<β<3π2\cos \beta = - \frac { 15 } { 17 } \quad \text { where } \pi < \beta < \frac { 3 \pi } { 2 }

A) sin(αβ)=140221\sin ( \alpha - \beta ) = \frac { 140 } { 221 } cos(αβ)=171221\cos ( \alpha - \beta ) = - \frac { 171 } { 221 }
B) sin(αβ)=220221\sin ( \alpha - \beta ) = - \frac { 220 } { 221 } cos(αβ)=21221\cos ( \alpha - \beta ) = - \frac { 21 } { 221 }
C) sin(αβ)=171221\sin ( \alpha - \beta ) = - \frac { 171 } { 221 } cos(αβ)=140221\cos ( \alpha - \beta ) = \frac { 140 } { 221 }
D) sin(αβ)=220221\sin ( \alpha - \beta ) = \frac { 220 } { 221 } cos(αβ)=21221\cos ( \alpha - \beta ) = - \frac { 21 } { 221 }
E) sin(αβ)=21221\sin ( \alpha - \beta ) = - \frac { 21 } { 221 } cos(αβ)=220221\cos ( \alpha - \beta ) = - \frac { 220 } { 221 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Use the given information to compute cos(θ2)\cos \left( \frac { \theta } { 2 } \right) . sinθ=18\sin \theta = - \frac { 1 } { 8 } and 180<θ<270180 ^ { \circ } < \theta < 270 ^ { \circ }

A) 3105- \frac { 3 \sqrt { 10 } } { 5 }
B) 3614\frac { 3 \sqrt { 6 } } { 14 }
C) 8374- \frac { \sqrt { 8 - 3 \sqrt { 7 } } } { 4 }
D) 5+373- \frac { \sqrt { 5 + 3 \sqrt { 7 } } } { 3 }
E) 53103\frac { \sqrt { 5 - 3 \sqrt { 10 } } } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
Use the given information to compute cos(θ2)\cos \left( \frac { \theta } { 2 } \right) . cosθ=47\cos \theta = \frac { 4 } { 7 } and 3π2<θ<2π\frac { 3 \pi } { 2 } < \theta < 2 \pi

A) 1415- \frac { 14 } { 15 }
B) 15414- \frac { \sqrt { 154 } } { 14 }
C) 14314\frac { \sqrt { 143 } } { 14 }
D) 4/15
E) 7715\frac { \sqrt { 77 } } { 15 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Determine all of the solutions in the interval 0θ1800 ^ { \circ } \leq \theta \leq 180 ^ { \circ } . tan2θ=33\tan 2 \theta = - \frac { \sqrt { 3 } } { 3 }

A) θ75\theta \approx 75 ^ { \circ } , and θ105\theta \approx 105 ^ { \circ }
B) θ195\theta \approx 195 ^ { \circ } , and θ165\theta \approx 165 ^ { \circ }
C) θ75\theta \approx 75 ^ { \circ } , and θ165\theta \approx 165 ^ { \circ }
D) θ15\theta \approx 15 ^ { \circ } , and θ105\theta \approx 105 ^ { \circ }
E) θ150\theta \approx 150 ^ { \circ } , and θ330\theta \approx 330 ^ { \circ }
F) θ195,andθ285\theta \approx 195 ^ { \circ } \quad, and \quad \theta \approx 285 ^ { \circ }

G) no solution.
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Find the right side of the identity. sins+sintsins+sint=?\frac { \sin s + \sin t } { \sin s + \sin t } = ?

A) tan(s+t2)\tan \left( \frac { s + t } { 2 } \right)
B) tan(st)\tan ( s - t )
C) sin(s+t)\sin ( s + t )
D) cot(s+t2)\cot \left( \frac { s + t } { 2 } \right)
E) tan(st2)\tan \left( \frac { s - t } { 2 } \right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
Is t=π3t = \frac { \pi } { 3 } a solution of 2sint+2cost=312 \sin t + 2 \cos t = \sqrt { 3 } - 1 ?
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
Refer to the triangle and compute sin2s\sin 2 s .  <strong>Refer to the triangle and compute  \sin 2 s  .  </strong> A)  \frac { 120 } { 169 }  B)  - \frac { 245 } { 389 }  C)  \frac { 201 } { 389 }  D)  - \frac { 119 } { 169 }  E)  - \frac { 119 } { 120 }

A) 120169\frac { 120 } { 169 }
B) 245389- \frac { 245 } { 389 }
C) 201389\frac { 201 } { 389 }
D) 119169- \frac { 119 } { 169 }
E) 119120- \frac { 119 } { 120 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cos47cos43\cos 47 ^ { \circ } \cos 43 ^ { \circ }

A) 12(1+sin4)\frac { 1 } { 2 } \left( 1 + \sin 4 ^ { \circ } \right)
B) 2cos2\sqrt { 2 } \cos 2 ^ { \circ }
C) 12cos4\frac { 1 } { 2 } \cos 4 ^ { \circ }
D) 12cos4- \frac { 1 } { 2 } \cos 4 ^ { \circ }
E) 12(1sin4)\frac { 1 } { 2 } \left( 1 - \sin 4 ^ { \circ } \right)
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
Use the addition formulas for tangent to simplify the expression. tan2π7tan5π421+tan2π7tan5π42\frac { \tan \frac { 2 \pi } { 7 } - \tan \frac { 5 \pi } { 42 } } { 1 + \tan \frac { 2 \pi } { 7 } \tan \frac { 5 \pi } { 42 } }

A) 2\sqrt { 2 }
B) 33\frac { \sqrt { 3 } } { 3 }
C) 3\sqrt { 3 }
D) 22\frac { \sqrt { 2 } } { 2 }
E) 1
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. cos5π12cosπ12\cos \frac { 5 \pi } { 12 } \cos \frac { \pi } { 12 }

A) 0
B) -1/4
C) -1/2
D) 1/4
E) 1/2
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
Use the following information to evaluate the expression. cosθ=1213(3π2<θ<2π)\cos \theta = \frac { 12 } { 13 } \quad \left( \frac { 3 \pi } { 2 } < \theta < 2 \pi \right) tan(θ2)=?\tan \left( \frac { \theta } { 2 } \right) = ?

A) 1713- \frac { \sqrt { 17 } } { 13 }
B) 1112\frac { \sqrt { 11 } } { 12 }
C) 8/7
D) -1/3
E) -1/5
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
Use a product-to-sum formula to convert the expression to a sum or difference. Simplify where possible. sin125sin5\sin 125 ^ { \circ } \sin 5 ^ { \circ }

A) 12sin13034\frac { 1 } { 2 } \sin 130 ^ { \circ } - \frac { \sqrt { 3 } } { 4 }
B) 1412cos130- \frac { 1 } { 4 } - \frac { 1 } { 2 } \cos 130 ^ { \circ }
C) 12sin130+34\frac { 1 } { 2 } \sin 130 ^ { \circ } + \frac { \sqrt { 3 } } { 4 }
D) 3cos65\sqrt { 3 } \cos 65 ^ { \circ }
E) 12cos13014\frac { 1 } { 2 } \cos 130 ^ { \circ } - \frac { 1 } { 4 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
Use the addition formulas for sine and cosine to simplify the expression. cos(θπ3)+cos(θ+π3)\cos \left( \theta - \frac { \pi } { 3 } \right) + \cos \left( \theta + \frac { \pi } { 3 } \right)

A) 3\sqrt { 3 } cosθ\cos \theta
B) cosθ\cos \theta
C) 13cosθ\frac { 1 } { 3 } \cos \theta
D) 0
E) 3 cosθ\cos \theta
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
Use the given information to compute tan(s+t)\tan ( s + t ) and tan(st)\tan ( s - t ) . tans=5\tan s = 5 and tant=4\tan t = 4

A) tan(s+t)=919\tan ( s + t ) = - \frac { 9 } { 19 } tan(st)=121\tan ( s - t ) = \frac { 1 } { 21 }
B) tan(s+t)=121\tan ( s + t ) = - \frac { 1 } { 21 } tan(st)=919\tan ( s - t ) = \frac { 9 } { 19 }
C) tan(s+t)=199\tan ( s + t ) = - \frac { 19 } { 9 } tan(st)=211\tan ( s - t ) = \frac { 21 } { 1 }
D) tan(s+t)=56\tan ( s + t ) = \frac { 5 } { 6 } tan(st)=56\tan ( s - t ) = - \frac { 5 } { 6 }
E) tan(s+t)=211\tan ( s + t ) = - \frac { 21 } { 1 } tan(st)=199\tan ( s - t ) = \frac { 19 } { 9 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
Use the formula for sin(st)\sin ( s - t ) to compute the exact value of sinπ12\sin \frac { \pi } { 12 } .

A) 6+24\frac { \sqrt { 6 } + \sqrt { 2 } } { 4 }
B) 324\frac { \sqrt { 3 } - \sqrt { 2 } } { 4 }
C) 3+24\frac { \sqrt { 3 } + \sqrt { 2 } } { 4 }
D) 624\frac { \sqrt { 6 } - \sqrt { 2 } } { 4 }
E) 34\frac { \sqrt { 3 } } { 4 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
Compute cos(α+θ)\cos ( \alpha + \theta ) and cos(αθ)\cos ( \alpha - \theta ) using the data below. sinα=35 where π2<α<π\sin \alpha = \frac { 3 } { 5 } \quad \text { where } \frac { \pi } { 2 } < \alpha < \pi cosθ=513 where 2π<θ<3π2\cos \theta = \frac { 5 } { 13 } \quad \text { where } - 2 \pi < \theta < - \frac { 3 \pi } { 2 }

A) cos(α+θ)=21221\cos ( \alpha + \theta ) = \frac { 21 } { 221 } cos(αθ)=171221\cos ( \alpha - \theta ) = - \frac { 171 } { 221 }
B) cos(α+θ)=5665cos(αθ)=1665\cos ( \alpha + \theta ) = - \frac { 56 } { 65 } \cos ( \alpha - \theta ) = \frac { 16 } { 65 }
C) cos(α+θ)=1665\cos ( \alpha + \theta ) = \frac { 16 } { 65 } cos(αθ)=5665\cos ( \alpha - \theta ) = - \frac { 56 } { 65 }
D) cos(α+θ)=5665\cos ( \alpha + \theta ) = \frac { 56 } { 65 } cos(αθ)=1665\cos ( \alpha - \theta ) = \frac { 16 } { 65 }
E) cos(α+θ)=171221\cos ( \alpha + \theta ) = - \frac { 171 } { 221 } cos(αθ)=21221\cos ( \alpha - \theta ) = \frac { 21 } { 221 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
Evaluate the quantity that is defined, but do not use a calculator or tables. arcsin(12)\arcsin \left( - \frac { 1 } { 2 } \right)

A) -π/4
B) -π/3
C) -π/2
D) π/4
E) -π/6
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate the quantity without using a calculator or tables. tan(arccos1213)\tan \left( \arccos \frac { 12 } { 13 } \right)

A) 1213\frac { 12 } { 13 }
B) 512\frac { 5 } { 12 }
C) 513\frac { 5 } { 13 }
D) 1312\frac { 13 } { 12 }
E) 135\frac { 13 } { 5 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Evaluate the given quantity, but do not use a calculator or table. cos1(12)\cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right)

A) π
B) π2\frac { \pi } { 2 }
C) 0
D) π3\frac { \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
Evaluate the quantity without using a calculator or tables. sin(tan1(1))\sin \left( \tan ^ { - 1 } ( - 1 ) \right)

A) 00
B) 22- \frac { \sqrt { 2 } } { 2 }
C) 22\frac { \sqrt { 2 } } { 2 }
D) 2\sqrt { 2 }
E) 2- \sqrt { 2 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
Evaluate the quantity without using a calculator or tables. cos(arctan13)\cos \left( \arctan \frac { 1 } { \sqrt { 3 } } \right)

A) 1/2
B) 32\frac { \sqrt { 3 } } { 2 }
C) 32- \frac { \sqrt { 3 } } { 2 }
D) -1/2
E) 33\frac { \sqrt { 3 } } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.