Deck 13: Boundary-Value Problems in Other Coordinate Systems

Full screen (f)
exit full mode
Question
In the previous problem, the solution of the eigenvalue problem is

A) λ=nπ,T=ancos(nπi)+bnsin(nπt)\lambda = n \pi , T = a _ { n } \cos ( n \pi i ) + b _ { n } \sin ( n \pi t )
B) λ=n2π2,T=ancos(nπt)+bnsin(nπt)\lambda = n ^ { 2 } \pi ^ { 2 } , T = a _ { n } \cos ( n \pi t ) + b _ { n } \sin ( n \pi t )
C) λ=zn2/4\lambda = z _ { n } ^ { 2 } / 4 , where J0(zn)=0,R=J0(znr/2)J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r / 2 \right)
D) λ=zn/2\lambda = z _ { n } / 2 , where J0(zn)=0,R=J0(znr/2)J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r / 2 \right)
E) λ=zn2\lambda = z _ { n } ^ { 2 } , where J0(zn)=0,R=J0(znr)J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r \right)
Use Space or
up arrow
down arrow
to flip the card.
Question
Using the separation of the previous problem, the equation for Θ\Theta becomes

A) ΘλΘ=0\Theta ^ { \prime \prime } - \lambda \Theta = 0
B) Θ+λΘ=0\Theta ^ { \prime \prime } + \lambda \Theta = 0
C) sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0
D) cos(θ)Θsin(θ)Θ+λsin(θ)Θ=0\cos ( \theta ) \Theta ^ { \prime \prime } - \sin ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0
E) sin(θ)Θcos(θ)Θ+λsin(θ)Θ=0\sin ( \theta ) \Theta ^ { \prime \prime } - \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0
Question
The two dimensional wave equation in polar coordinates is

A) a2(2yr21rur+1r22uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
B) a2(2yr2+1rur1r22uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
C) a2(2yr2+1rur+1r22uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
D) a2(2yr2+1r2ur+1r2uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
E) a2(2yr2+1r2ur1r2uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } - \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
Question
Consider the vibrations of a circular membrane of radius 2 clamped along the circumference, with an initial displacement of 1sin(πr/2)1 - \sin ( \pi r / 2 ) and an initial velocity of zero. The mathematical model for this situation is

A) 2ur2+1rur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),u,(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
B) 2ur21rur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),u,(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
C) 2ur2+1rur=2ut2=0,u(2,t)=0,u(r,0)=1sin(π/2),ut(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } = - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi / 2 ) , u _ { t } ( r , 0 ) = 0
D) 2ur21r2ur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),ut(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } = - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u _ { t } ( r , 0 ) = 0
E) 2ur2+1r2ur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),u,(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
Question
In the previous four problems, the infinite series solution of the original problem is (for certain values of the constants ana _ { n } and bnb _ { n } )

A) u=n=1anJ0(znr/2)cos(znt/2)u = \sum _ { n = 1 } ^ { \infty } a _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \cos \left( z _ { n } t / 2 \right)
B) u=n=1bnJ0(znr/2)sin(znt/2)u = \sum _ { n = 1 } ^ { \infty } b _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \sin \left( z _ { n } t / 2 \right)
C) u=n=1bnJ0(nπr)sin(nπt)u = \sum _ { n = 1 } ^ { \infty } b _ { n } J _ { 0 } ( n \pi r ) \sin ( n \pi t )
D) u=n=1anJ0(nπr)cos(nπt)u = \sum _ { n = 1 } ^ { \infty } a _ { n } J _ { 0 } ( n \pi r ) \cos ( n \pi t )
E) u=n1J0(znr/2)(ancos(nπt)+bnsin(nπt))u = \sum _ { n - 1 } ^ { \infty } J _ { 0 } \left( z _ { n } r / 2 \right) \left( a _ { n } \cos ( n \pi t ) + b _ { n } \sin ( n \pi t ) \right)
Question
The equations relating Cartesian and spherical coordinates include Select all that apply.

A) y=rcosϕcosθy = r \cos \phi \cos \theta
B) x=rcosϕsinθx = r \cos \phi \sin \theta
C) r2=x2+y2+z2r ^ { 2 } = x ^ { 2 } + y ^ { 2 } + z ^ { 2 }
D) z=rcosθz = r \cos \theta
E) tanϕ=y/x\tan \phi = y / x
Question
In the previous problem, separate variables using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems are

A) R+rRr2λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0R ^ { \prime \prime } + r R ^ { \prime } - r ^ { 2 } \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
B) R+rR+r2λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0R ^ { \prime \prime } + r R ^ { \prime } + r ^ { 2 } \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
C) r2R+rRλR=0,ΘλΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } - \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
D) r2R+rR+λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
E) r2R+rRλR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
Question
The solution of r2R+rR+λR=0,R(1)=0,R(2)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 1 ) = 0 , R ( 2 ) = 0 is

A) λ=nπ/ln2,R=sin(nπlnr/ln2)\lambda = n \pi / \ln 2 , R = \sin ( n \pi \ln r / \ln 2 )
B) λ=(nπ/ln2)2,R=sin(nπlnr/ln2)\lambda = ( n \pi / \ln 2 ) ^ { 2 } , R = \sin ( n \pi \ln r / \ln 2 )
C) λ=(nπ/ln2)2,R=cos(nπlnr/ln2)\lambda = ( n \pi / \ln 2 ) ^ { 2 } , R = \cos ( n \pi \ln r / \ln 2 )
D) λ=nπ/ln2,R=cos(nπlnr/ln2)\lambda = n \pi / \ln 2 , R = \cos ( n \pi \ln r / \ln 2 )
E) none of the above
Question
In the previous four problems, the infinite series solution of the original problem is u=n=1rn(Ancos(nθ)+Bnsin(nθ))u = \sum _ { n = 1 } ^ { \infty } r ^ { n } \left( A _ { n } \cos ( n \theta ) + B _ { n } \sin ( n \theta ) \right) where Select all that apply.

A) An=02πf(θ)cos(nθ)dθ/(cnπ)A _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
B) Bn=02πf(θ)sin(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \sin ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
C) Bn=02πf(θ)cos(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
D) An=0A _ { n } = 0
E) Bn=0B _ { n } = 0
Question
In changing from Cartesian to spherical coordinates, rx\frac { \partial r } { \partial x } becomes

A) sinϕsinθ\sin \phi \sin \theta
B) sinϕcosθ\sin \phi \cos \theta
C) cosϕsinθ\cos \phi \sin \theta
D) cosϕcosθ\cos \phi \cos \theta
E) sinϕ\sin \phi
Question
In the three previous problems, the product solutions are

A) un=rn(cnenθ+dnenθ),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 0,1,2 , \ldots
B) un=rn(cnenθ+dnenθ),n=1,2,3,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 1,2,3 , \ldots
C) un=rn(cncos(nθ)+dnsin(nθ)),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 0,1,2 , \ldots
D) un=rncos(nθ),n=0,1,2,u _ { n } = r ^ { n } \cos ( n \theta ) , n = 0,1,2 , \ldots
E) un=rnsin(nθ),n=1,2,3,u _ { n } = r ^ { n } \sin ( n \theta ) , n = 1,2,3 , \ldots
Question
In the previous three problems, the solution for RR is

A) R=rnR = r ^ { n }
B) R=rn1R = r ^ { - n - 1 }
C) R=c1rn+c2rn1R = c _ { 1 } r ^ { n } + c _ { 2 } r ^ { - n - 1 }
D) R=c1rn+c2rn+1R = c _ { 1 } r ^ { n } + c _ { 2 } r ^ { n + 1 }
E) R=c1rn+c2rn1R = c _ { 1 } r ^ { n } + c _ { 2 } r ^ { n - 1 }
Question
In the previous problem, the solution of the eigenvalue problem is

A) λ=n2,R=rn,n=0,1,2,\lambda = n ^ { 2 } , R = r ^ { n } , n = 0,1,2 , \ldots
B) λ=n,R=rn,n=0,1,2,\lambda = n , R = r ^ { n } , n = 0,1,2 , \ldots
C) λ=n,Θ=cncos(nθ)+dnsin(nθ),n=0,1,2,.\lambda = n , \Theta = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 0,1,2 , .
D) λ=n2,Θ=dnsin(nθ),n=1,2,3,.\lambda = n ^ { 2 } , \Theta = d _ { n } \sin ( n \theta ) , n = 1,2,3 , .
E) λ=n2,Θ=cncos(nθ),n=0,1,2,\lambda = n ^ { 2 } , \Theta = c _ { n } \cos ( n \theta ) , n = 0,1,2 , \ldots
Question
In separating variables, using, u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) , in the equation 2ur2+2rur+1r22uθ2+cotθr2uθ=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 2 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } + \frac { \cot \theta } { r ^ { 2 } } \frac { \partial u } { \partial \theta } = 0 , the resulting equation for RR and is

A) r2R+2rRλR=0r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0
B) r2R2rRλR=0r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda R = 0
C) rR+2rRλrR=0r R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda r R = 0
D) rR+2RλrR=0r R ^ { \prime \prime } + 2 R ^ { \prime } - \lambda r R = 0
E) r2R2rRλrR=0r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda r R = 0
Question
In the previous problem, if we also require that Θ\Theta be bounded everywhere, the solution of the eigenvalue problem is

A) λ=n(n+1),Θ=Pn(sinθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \sin \theta ) , n = 1,2,3 , \ldots
B) λ=n(n1),Θ=sin(nθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = \sin ( n \theta ) , n = 1,2,3 , \ldots
C) λ=n(n1),Θ=cos(nθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = \cos ( n \theta ) , n = 1,2,3 , \ldots
D) λ=n(n+1),Θ=Pn(cosθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
E) λ=n(n1),Θ=Pn(sinθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = P _ { n } ( \sin \theta ) , n = 1,2,3 , \ldots
Question
In changing from Cartesian to polar coordinates, ry\frac { \partial r } { \partial y } is

A) sinθ\sin \theta
B) cosθ\cos \theta
C) sinθ/r\sin \theta / r
D) cosθ/r\cos \theta / r
E) sinθ/r- \sin \theta / r
Question
In changing from Cartesian to polar coordinates, uy\frac { \partial u } { \partial y } is

A) cosθursinθuθ/r\cos \theta \frac { \partial u } { \partial r } - \sin \theta \frac { \partial u } { \partial \theta } / r
B) cosθur+cosθuθ/r\cos \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
C) sinθur+cosθuθ\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta }
D) sinθur+cosθuθ/r\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
E) sinθurcosθuθ/r\sin \theta \frac { \partial u } { \partial r } - \cos \theta \frac { \partial u } { \partial \theta } / r
Question
In the previous problem, after separating variables using u(r,t)=R(r)T(t)u ( r , t ) = R ( r ) T ( t ) . the resulting problems are

A) rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded R(2)=0,TλT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
B) rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded R(2)=0,T+λT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
C) rR+RrλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } - r \lambda R = 0 , R ( 0 ) is bounded R(2)=0,T+λT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
D) rR+R+λR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded R(2)=0,T+λT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
E) rR+R+λR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded R(2)=0,TλT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
Question
Consider the steady-state temperature distribution in a circular disc of radius CC centere at the origin, with temperature given as a function, f(θ)f ( \theta ) on the boundary r=cr = c and zero on the boundaries θ=0\theta = 0 and θ=π\theta = \pi The mathematical model of this situation is

A) 2ur21rur+1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
B) 2ur2+1rur1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
C) 2ur21rur1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
D) 2ur2+1r2ur+1r2uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
E) 2ur2+1rur+1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
Question
In the previous three problems, the product solutions are

A) u=J0(znr/2)(ancos(znt/2)+bnsin(znt/2))u = J _ { 0 } \left( z _ { n } r / 2 \right) \left( a _ { n } \cos \left( z _ { n } t / 2 \right) + b _ { n } \sin \left( z _ { n } t / 2 \right) \right)
B) u=J0(znr/2)ancos(znt/2)u = J _ { 0 } \left( z _ { n } r / 2 \right) a _ { n } \cos \left( z _ { n } t / 2 \right)
C) u=J0(znr/2)bnsin(znt/2)u = J _ { 0 } \left( z _ { n } r / 2 \right) b _ { n } \sin \left( z _ { n } t / 2 \right)
D) u=J0(nπr)bnsin(nπi)u = J _ { 0 } ( n \pi r ) b _ { n } \sin ( n \pi i )
E) u=J0(nπr)ancos(nπi)u = J _ { 0 } ( n \pi r ) a _ { n } \cos ( n \pi i )
Question
In the previous problem, the solution of the eigenvalue problem is

A) λ=n,Θ=cncos(nθ)+dnsin(nθ),n=0,1,2,\lambda = n , \Theta = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 0,1,2 , \ldots
B) λ=n2,=cncos(nθ)+dnsin(nθ),n=0,1,2,\lambda = n ^ { 2 } , \ominus = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 0,1,2 , \ldots
C) λ=n2,=cncos(nθ)+dnsin(nθ),n=1,2,3,\lambda = n ^ { 2 } , \ominus = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 1,2,3 , \ldots
D) λ=n2,R=rn,n=0,1,2,\lambda = n ^ { 2 } , R = r ^ { n } , n = 0,1,2 , \ldots
E) λ=n,R=rn,n=0,1,2,\lambda = n , R = r ^ { n } , n = 0,1,2 , \ldots
Question
In changing from Cartesian to polar coordinates, rx\frac { \partial r } { \partial x } is

A) sinθ\sin \theta
B) cosθ\cos \theta
C) sinθ/r\sin \theta / r
D) cosθ/r\cos \theta / r
E) sinθ/r- \sin \theta / r
Question
In the previous problem, separate variables using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems are

A) r2R+rRλR=0,ΘλΘ=0,Θ(θ)=Θ(θ+2π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } - \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + 2 \pi )
B) r2R+rR+λR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+2π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + 2 \pi )
C) r2R+rRλR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+2π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + 2 \pi )
D) r2R+rRλR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + \pi )
E) r2R+rR+λR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + \pi )
Question
In changing from Cartesian to polar coordinates, ux\frac { \partial u } { \partial x } is

A) sinθur+cosθuθ/r\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
B) sinθurcosθuθ/r\sin \theta \frac { \partial u } { \partial r } - \cos \theta \frac { \partial u } { \partial \theta } / r
C) cosθursinθuθ/r\cos \theta \frac { \partial u } { \partial r } - \sin \theta \frac { \partial u } { \partial \theta } / r
D) cosθur+cosθuθ/r\cos \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
E) sinθur+cosθuθ\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta }
Question
The relationships between Cartesian and spherical coordinates are Select all that apply.

A) r2=x2+y2r ^ { 2 } = x ^ { 2 } + y ^ { 2 }
B) tanϕ=y/x\tan \phi = y / x
C) x=rcosϕsinθx = r \cos \phi \sin \theta
D) y=rcosϕcosθy = r \cos \phi \cos \theta
E) z=rcosθz = r \cos \theta
Question
In the previous three problems, the product solutions are

A) u=J0(nπr/3)cos(nπz/3)u = J _ { 0 } ( n \pi r / 3 ) \cos ( n \pi z / 3 )
B) u=J0(n2π2r/9)cos(nπz/3)u = J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \cos ( n \pi z / 3 )
C) u=J0(n2π2r/9)sin(nπz/3)u = J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \sin ( n \pi z / 3 )
D) u=J0(znr)cosh(zn(z3))u = J _ { 0 } \left( z _ { n } r \right) \cosh \left( z _ { n } ( z - 3 ) \right)
E) u=J0(znr/2)sinh(zn(z3)/2)u = J _ { 0 } \left( z _ { n } r / 2 \right) \sinh \left( z _ { n } ( z - 3 ) / 2 \right)
Question
Consider the steady-state temperature distribution in a circular cylinder of radius 2 and height 3, with zero temperature at r=2r = 2 and at z=3z = 3 and a temperature of 10 at z=0z = 0 . The mathematical model for this problem is

A) 2ur2+1rur2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
B) 2ur21rur2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
C) 2ur21r2ur+2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
D) 2ur2+1rur+2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
E) 2ur2+1r2ur+2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
Question
In the problem 2ur2+2rur+1r22uθ2+cotθr2uθ=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 2 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } + \frac { \cot \theta } { r ^ { 2 } } \frac { \partial u } { \partial \theta } = 0 , separate variables, using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems for RR and Θ\Theta are

A) r2R+2rR+λR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
B) r2R+2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
C) r2R+2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θλsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } - \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
D) r2R2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
E) r2R+2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θcos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } - \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
Question
The Laplacian in polar coordinates is

A) 2ur2+1r2ur+1r2uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
B) 2ur2+1rur+1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
C) 2ur21rur+1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
D) 2ur2+1rur1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
E) 2ur21rur1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
Question
Consider the steady-state temperature distribution in a circular disc of radius CC centere at the origin, with temperature given as a function, f(θ)f ( \theta ) on the boundary. The mathematical model of this situation is

A) 2ur21rur+1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
B) 2ur2+1rur1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
C) 2ur21rur1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
D) 2ur2+1r2ur+1r2uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
E) 2ur2+1rur+1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
Question
In the previous four problems, the infinite series solution is (for certain values of the constants)

A) u=n1cnJ0(nπr/3)cos(nπz/3)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } ( n \pi r / 3 ) \cos ( n \pi z / 3 )
B) u=n1cnJ0(n2π2r/9)cos(nπz/3)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \cos ( n \pi z / 3 )
C) u=n1cnJ0(n2π2r/9)sin(nπz/3)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \sin ( n \pi z / 3 )
D) u=n1cnJ0(znr/2)sinh(zn(z3)/2)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \sinh \left( z _ { n } ( z - 3 ) / 2 \right)
E) u=n=1cnJ0(znr)cosh(zn(z3))u = \sum _ { n = 1 } ^ { \infty } c _ { n } J _ { 0 } \left( z _ { n } r \right) \cosh \left( z _ { n } ( z - 3 ) \right)
Question
In the three previous problems, the product solutions are

A) un=(anrn+bnrn)(cncos(nθ)+dnsin(nθ)),n=0,1,2,u _ { n } = \left( a _ { n } r ^ { n } + b _ { n } r ^ { - n } \right) \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 0,1,2 , \ldots
B) un=rn(cncos(nθ)+dnsin(nθ)),n=1,2,3,u _ { n } = r ^ { n } \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 1,2,3 , \ldots
C) un=rn(cncos(nθ)+dnsin(nθ)),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 0,1,2 , \ldots
D) un=rn(cnenθ+dnenθ),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 0,1,2 , \ldots
E) un=rn(cnenθ+dnenθ),n=1,2,3,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 1,2,3 , \ldots
Question
The solution of r2R+rR+λR=0,R(0)=0,R(1)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 0 ) = 0 , R ( 1 ) = 0 is

A) λ=nπ,R=sin(nπlnr)\lambda = n \pi , R = \sin ( n \pi \ln r )
B) λ=(nπ)2,R=sin(nπlnr)\lambda = ( n \pi ) ^ { 2 } , R = \sin ( n \pi \ln r )
C) λ=(nπ)2,R=sin(nπlnr)+cos(nπlnr)\lambda = ( n \pi ) ^ { 2 } , R = \sin ( n \pi \ln r ) + \cos ( n \pi \ln r )
D) λ=nπ,R=sin(nπlnr)cos(nπlnr)\lambda = n \pi , R = \sin ( n \pi \ln r ) - \cos ( n \pi \ln r )
E) none of the above
Question
In the previous problem, the solution of the eigenvalue problem is

A) λ=n(n+1),R=rn,n=1,2,3,\lambda = n ( n + 1 ) , R = r ^ { n } , n = 1,2,3 , \ldots
B) λ=n(n1),R=rn,n=1,2,3,\lambda = n ( n - 1 ) , R = r ^ { n } , n = 1,2,3 , \ldots
C) λ=n(n1),Θ=Pn(cosθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
D) λ=n(n+1),Θ=Pn(cosθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
E) λ=n(n+1),Θ=Pn(sinθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \sin \theta ) , n = 1,2,3 , \ldots
Question
In the previous two problems, the product solutions are

A) un=rnPn(cosθ)u _ { n } = r ^ { n } P _ { n } ( \cos \theta )
B) un=rnPn(cosθ)u _ { n } = r ^ { - n } P _ { n } ( \cos \theta )
C) un=rnPn(sinθ)u _ { n } = r ^ { n } P _ { n } ( \sin \theta )
D) un=rnPn(sinθ)u _ { n } = r ^ { - n } P _ { n } ( \sin \theta )
E) none of the above
Question
In the previous problem, after separating variables, the resulting problems are

A) rRR+λrR=0,R(0)r R ^ { \prime \prime } - R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,Z+λZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } + \lambda Z = 0 , Z ( 3 ) = 0
B) rR+RλrR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } - \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,ZλZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
C) rRRλrR=0,R(0)r R ^ { \prime \prime } - R ^ { \prime } - \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,ZλZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
D) rR+R+λrR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,ZλZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
E) rR+R+λrR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,Z+λZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } + \lambda Z = 0 , Z ( 3 ) = 0
Question
When changing from Cartesian to spherical coordinates, ϕx=\frac { \partial \phi } { \partial x } =

A) sinϕ/(rsinθ)- \sin \phi / ( r \sin \theta )
B) sinϕ/(rsinθ)\sin \phi / ( r \sin \theta )
C) cosϕ/(rsinθ)- \cos \phi / ( r \sin \theta )
D) cosϕ/(rcosθ)\cos \phi / ( r \cos \theta )
E) sinϕ/(rcosθ)\sin \phi / ( r \cos \theta )
Question
In the previous four problems, the infinite series solution of the original problem is u=A0+n=1rn(Ancos(nθ)+Bnsin(nθ))u = A _ { 0 } + \sum _ { n = 1 } ^ { \infty } r ^ { n } \left( A _ { n } \cos ( n \theta ) + B _ { n } \sin ( n \theta ) \right) where Select all that apply.

A) A0=02πf(θ)dθl(2π)A _ { 0 } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) d \theta l ( 2 \pi )
B) An=02πf(θ)sin(nθ)dθ/(cnπ)A _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \sin ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
C) An=02πf(θ)cos(nθ)dθ/(cnπ)A _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
D) Bn=02πf(θ)sin(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \sin ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
E) Bn=02πf(θ)cos(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
Question
In the previous problem, the solution of the eigenvalue problem is

A) λ=zn2/4\lambda = z _ { n } ^ { 2 } / 4 , where J0(zn)=0;R=J0(znr/2)J _ { 0 } \left( z _ { n } \right) = 0 ; R = J _ { 0 } \left( z _ { n } r / 2 \right)
B) λ=zn2\lambda = z _ { n } ^ { 2 } , where J0(zn)=0;R=J0(znr)J _ { 0 } \left( z _ { n } \right) = 0 ; R = J _ { 0 } \left( z _ { n } r \right)
C) λ=nπ/9,Z=cos(nπz/3)\lambda = n \pi / 9 , Z = \cos ( n \pi z / 3 )
D) λ=n2π2/9,Z=cos(nπz/3)\lambda = n ^ { 2 } \pi ^ { 2 } / 9 , Z = \cos ( n \pi z / 3 )
E) λ=n2π2/9,Z=sin(nπz/3)\lambda = n ^ { 2 } \pi ^ { 2 } / 9 , Z = \sin ( n \pi z / 3 )
Question
When changing from Cartesian to spherical coordinates, rz=\frac { \partial r } { \partial z } =

A) cosϕ\cos \phi
B) cosθ\cos \theta
C) tanθ\tan \theta
D) sinϕ\sin \phi
E) sinθ\sin \theta
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 13: Boundary-Value Problems in Other Coordinate Systems
1
In the previous problem, the solution of the eigenvalue problem is

A) λ=nπ,T=ancos(nπi)+bnsin(nπt)\lambda = n \pi , T = a _ { n } \cos ( n \pi i ) + b _ { n } \sin ( n \pi t )
B) λ=n2π2,T=ancos(nπt)+bnsin(nπt)\lambda = n ^ { 2 } \pi ^ { 2 } , T = a _ { n } \cos ( n \pi t ) + b _ { n } \sin ( n \pi t )
C) λ=zn2/4\lambda = z _ { n } ^ { 2 } / 4 , where J0(zn)=0,R=J0(znr/2)J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r / 2 \right)
D) λ=zn/2\lambda = z _ { n } / 2 , where J0(zn)=0,R=J0(znr/2)J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r / 2 \right)
E) λ=zn2\lambda = z _ { n } ^ { 2 } , where J0(zn)=0,R=J0(znr)J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r \right)
λ=zn2/4\lambda = z _ { n } ^ { 2 } / 4 , where J0(zn)=0,R=J0(znr/2)J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r / 2 \right)
2
Using the separation of the previous problem, the equation for Θ\Theta becomes

A) ΘλΘ=0\Theta ^ { \prime \prime } - \lambda \Theta = 0
B) Θ+λΘ=0\Theta ^ { \prime \prime } + \lambda \Theta = 0
C) sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0
D) cos(θ)Θsin(θ)Θ+λsin(θ)Θ=0\cos ( \theta ) \Theta ^ { \prime \prime } - \sin ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0
E) sin(θ)Θcos(θ)Θ+λsin(θ)Θ=0\sin ( \theta ) \Theta ^ { \prime \prime } - \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0
sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0
3
The two dimensional wave equation in polar coordinates is

A) a2(2yr21rur+1r22uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
B) a2(2yr2+1rur1r22uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
C) a2(2yr2+1rur+1r22uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
D) a2(2yr2+1r2ur+1r2uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
E) a2(2yr2+1r2ur1r2uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } - \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
a2(2yr2+1rur+1r22uθ2)=2ut2a ^ { 2 } \left( \frac { \partial ^ { 2 } y } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } \right) = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } }
4
Consider the vibrations of a circular membrane of radius 2 clamped along the circumference, with an initial displacement of 1sin(πr/2)1 - \sin ( \pi r / 2 ) and an initial velocity of zero. The mathematical model for this situation is

A) 2ur2+1rur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),u,(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
B) 2ur21rur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),u,(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
C) 2ur2+1rur=2ut2=0,u(2,t)=0,u(r,0)=1sin(π/2),ut(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } = - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi / 2 ) , u _ { t } ( r , 0 ) = 0
D) 2ur21r2ur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),ut(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } = - \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u _ { t } ( r , 0 ) = 0
E) 2ur2+1r2ur=2ut2=0,u(2,t)=0,u(r,0)=1sin(πr/2),u,(r,0)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 2 , t ) = 0 , u ( r , 0 ) = 1 - \sin ( \pi r / 2 ) , u , ( r , 0 ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
In the previous four problems, the infinite series solution of the original problem is (for certain values of the constants ana _ { n } and bnb _ { n } )

A) u=n=1anJ0(znr/2)cos(znt/2)u = \sum _ { n = 1 } ^ { \infty } a _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \cos \left( z _ { n } t / 2 \right)
B) u=n=1bnJ0(znr/2)sin(znt/2)u = \sum _ { n = 1 } ^ { \infty } b _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \sin \left( z _ { n } t / 2 \right)
C) u=n=1bnJ0(nπr)sin(nπt)u = \sum _ { n = 1 } ^ { \infty } b _ { n } J _ { 0 } ( n \pi r ) \sin ( n \pi t )
D) u=n=1anJ0(nπr)cos(nπt)u = \sum _ { n = 1 } ^ { \infty } a _ { n } J _ { 0 } ( n \pi r ) \cos ( n \pi t )
E) u=n1J0(znr/2)(ancos(nπt)+bnsin(nπt))u = \sum _ { n - 1 } ^ { \infty } J _ { 0 } \left( z _ { n } r / 2 \right) \left( a _ { n } \cos ( n \pi t ) + b _ { n } \sin ( n \pi t ) \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
The equations relating Cartesian and spherical coordinates include Select all that apply.

A) y=rcosϕcosθy = r \cos \phi \cos \theta
B) x=rcosϕsinθx = r \cos \phi \sin \theta
C) r2=x2+y2+z2r ^ { 2 } = x ^ { 2 } + y ^ { 2 } + z ^ { 2 }
D) z=rcosθz = r \cos \theta
E) tanϕ=y/x\tan \phi = y / x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
In the previous problem, separate variables using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems are

A) R+rRr2λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0R ^ { \prime \prime } + r R ^ { \prime } - r ^ { 2 } \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
B) R+rR+r2λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0R ^ { \prime \prime } + r R ^ { \prime } + r ^ { 2 } \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
C) r2R+rRλR=0,ΘλΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } - \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
D) r2R+rR+λR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
E) r2R+rRλR=0,Θ+λΘ=0,Θ(0)=0,Θ(π)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
The solution of r2R+rR+λR=0,R(1)=0,R(2)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 1 ) = 0 , R ( 2 ) = 0 is

A) λ=nπ/ln2,R=sin(nπlnr/ln2)\lambda = n \pi / \ln 2 , R = \sin ( n \pi \ln r / \ln 2 )
B) λ=(nπ/ln2)2,R=sin(nπlnr/ln2)\lambda = ( n \pi / \ln 2 ) ^ { 2 } , R = \sin ( n \pi \ln r / \ln 2 )
C) λ=(nπ/ln2)2,R=cos(nπlnr/ln2)\lambda = ( n \pi / \ln 2 ) ^ { 2 } , R = \cos ( n \pi \ln r / \ln 2 )
D) λ=nπ/ln2,R=cos(nπlnr/ln2)\lambda = n \pi / \ln 2 , R = \cos ( n \pi \ln r / \ln 2 )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
In the previous four problems, the infinite series solution of the original problem is u=n=1rn(Ancos(nθ)+Bnsin(nθ))u = \sum _ { n = 1 } ^ { \infty } r ^ { n } \left( A _ { n } \cos ( n \theta ) + B _ { n } \sin ( n \theta ) \right) where Select all that apply.

A) An=02πf(θ)cos(nθ)dθ/(cnπ)A _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
B) Bn=02πf(θ)sin(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \sin ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
C) Bn=02πf(θ)cos(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
D) An=0A _ { n } = 0
E) Bn=0B _ { n } = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
In changing from Cartesian to spherical coordinates, rx\frac { \partial r } { \partial x } becomes

A) sinϕsinθ\sin \phi \sin \theta
B) sinϕcosθ\sin \phi \cos \theta
C) cosϕsinθ\cos \phi \sin \theta
D) cosϕcosθ\cos \phi \cos \theta
E) sinϕ\sin \phi
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
In the three previous problems, the product solutions are

A) un=rn(cnenθ+dnenθ),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 0,1,2 , \ldots
B) un=rn(cnenθ+dnenθ),n=1,2,3,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 1,2,3 , \ldots
C) un=rn(cncos(nθ)+dnsin(nθ)),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 0,1,2 , \ldots
D) un=rncos(nθ),n=0,1,2,u _ { n } = r ^ { n } \cos ( n \theta ) , n = 0,1,2 , \ldots
E) un=rnsin(nθ),n=1,2,3,u _ { n } = r ^ { n } \sin ( n \theta ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
In the previous three problems, the solution for RR is

A) R=rnR = r ^ { n }
B) R=rn1R = r ^ { - n - 1 }
C) R=c1rn+c2rn1R = c _ { 1 } r ^ { n } + c _ { 2 } r ^ { - n - 1 }
D) R=c1rn+c2rn+1R = c _ { 1 } r ^ { n } + c _ { 2 } r ^ { n + 1 }
E) R=c1rn+c2rn1R = c _ { 1 } r ^ { n } + c _ { 2 } r ^ { n - 1 }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
In the previous problem, the solution of the eigenvalue problem is

A) λ=n2,R=rn,n=0,1,2,\lambda = n ^ { 2 } , R = r ^ { n } , n = 0,1,2 , \ldots
B) λ=n,R=rn,n=0,1,2,\lambda = n , R = r ^ { n } , n = 0,1,2 , \ldots
C) λ=n,Θ=cncos(nθ)+dnsin(nθ),n=0,1,2,.\lambda = n , \Theta = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 0,1,2 , .
D) λ=n2,Θ=dnsin(nθ),n=1,2,3,.\lambda = n ^ { 2 } , \Theta = d _ { n } \sin ( n \theta ) , n = 1,2,3 , .
E) λ=n2,Θ=cncos(nθ),n=0,1,2,\lambda = n ^ { 2 } , \Theta = c _ { n } \cos ( n \theta ) , n = 0,1,2 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
In separating variables, using, u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) , in the equation 2ur2+2rur+1r22uθ2+cotθr2uθ=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 2 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } + \frac { \cot \theta } { r ^ { 2 } } \frac { \partial u } { \partial \theta } = 0 , the resulting equation for RR and is

A) r2R+2rRλR=0r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0
B) r2R2rRλR=0r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda R = 0
C) rR+2rRλrR=0r R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda r R = 0
D) rR+2RλrR=0r R ^ { \prime \prime } + 2 R ^ { \prime } - \lambda r R = 0
E) r2R2rRλrR=0r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda r R = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
In the previous problem, if we also require that Θ\Theta be bounded everywhere, the solution of the eigenvalue problem is

A) λ=n(n+1),Θ=Pn(sinθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \sin \theta ) , n = 1,2,3 , \ldots
B) λ=n(n1),Θ=sin(nθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = \sin ( n \theta ) , n = 1,2,3 , \ldots
C) λ=n(n1),Θ=cos(nθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = \cos ( n \theta ) , n = 1,2,3 , \ldots
D) λ=n(n+1),Θ=Pn(cosθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
E) λ=n(n1),Θ=Pn(sinθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = P _ { n } ( \sin \theta ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
In changing from Cartesian to polar coordinates, ry\frac { \partial r } { \partial y } is

A) sinθ\sin \theta
B) cosθ\cos \theta
C) sinθ/r\sin \theta / r
D) cosθ/r\cos \theta / r
E) sinθ/r- \sin \theta / r
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
In changing from Cartesian to polar coordinates, uy\frac { \partial u } { \partial y } is

A) cosθursinθuθ/r\cos \theta \frac { \partial u } { \partial r } - \sin \theta \frac { \partial u } { \partial \theta } / r
B) cosθur+cosθuθ/r\cos \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
C) sinθur+cosθuθ\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta }
D) sinθur+cosθuθ/r\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
E) sinθurcosθuθ/r\sin \theta \frac { \partial u } { \partial r } - \cos \theta \frac { \partial u } { \partial \theta } / r
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
In the previous problem, after separating variables using u(r,t)=R(r)T(t)u ( r , t ) = R ( r ) T ( t ) . the resulting problems are

A) rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded R(2)=0,TλT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
B) rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded R(2)=0,T+λT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
C) rR+RrλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } - r \lambda R = 0 , R ( 0 ) is bounded R(2)=0,T+λT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
D) rR+R+λR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded R(2)=0,T+λT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
E) rR+R+λR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded R(2)=0,TλT=0,T(0)=0R ( 2 ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
Consider the steady-state temperature distribution in a circular disc of radius CC centere at the origin, with temperature given as a function, f(θ)f ( \theta ) on the boundary r=cr = c and zero on the boundaries θ=0\theta = 0 and θ=π\theta = \pi The mathematical model of this situation is

A) 2ur21rur+1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
B) 2ur2+1rur1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
C) 2ur21rur1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
D) 2ur2+1r2ur+1r2uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
E) 2ur2+1rur+1r22uθ2=0,u(c,θ)=f(θ),u(r,0)=0,u(r,π)=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta ) , u ( r , 0 ) = 0 , u ( r , \pi ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
In the previous three problems, the product solutions are

A) u=J0(znr/2)(ancos(znt/2)+bnsin(znt/2))u = J _ { 0 } \left( z _ { n } r / 2 \right) \left( a _ { n } \cos \left( z _ { n } t / 2 \right) + b _ { n } \sin \left( z _ { n } t / 2 \right) \right)
B) u=J0(znr/2)ancos(znt/2)u = J _ { 0 } \left( z _ { n } r / 2 \right) a _ { n } \cos \left( z _ { n } t / 2 \right)
C) u=J0(znr/2)bnsin(znt/2)u = J _ { 0 } \left( z _ { n } r / 2 \right) b _ { n } \sin \left( z _ { n } t / 2 \right)
D) u=J0(nπr)bnsin(nπi)u = J _ { 0 } ( n \pi r ) b _ { n } \sin ( n \pi i )
E) u=J0(nπr)ancos(nπi)u = J _ { 0 } ( n \pi r ) a _ { n } \cos ( n \pi i )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
In the previous problem, the solution of the eigenvalue problem is

A) λ=n,Θ=cncos(nθ)+dnsin(nθ),n=0,1,2,\lambda = n , \Theta = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 0,1,2 , \ldots
B) λ=n2,=cncos(nθ)+dnsin(nθ),n=0,1,2,\lambda = n ^ { 2 } , \ominus = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 0,1,2 , \ldots
C) λ=n2,=cncos(nθ)+dnsin(nθ),n=1,2,3,\lambda = n ^ { 2 } , \ominus = c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) , n = 1,2,3 , \ldots
D) λ=n2,R=rn,n=0,1,2,\lambda = n ^ { 2 } , R = r ^ { n } , n = 0,1,2 , \ldots
E) λ=n,R=rn,n=0,1,2,\lambda = n , R = r ^ { n } , n = 0,1,2 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
In changing from Cartesian to polar coordinates, rx\frac { \partial r } { \partial x } is

A) sinθ\sin \theta
B) cosθ\cos \theta
C) sinθ/r\sin \theta / r
D) cosθ/r\cos \theta / r
E) sinθ/r- \sin \theta / r
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
In the previous problem, separate variables using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems are

A) r2R+rRλR=0,ΘλΘ=0,Θ(θ)=Θ(θ+2π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } - \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + 2 \pi )
B) r2R+rR+λR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+2π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + 2 \pi )
C) r2R+rRλR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+2π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + 2 \pi )
D) r2R+rRλR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + \pi )
E) r2R+rR+λR=0,Θ+λΘ=0,Θ(θ)=Θ(θ+π)r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( \theta ) = \Theta ( \theta + \pi )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
In changing from Cartesian to polar coordinates, ux\frac { \partial u } { \partial x } is

A) sinθur+cosθuθ/r\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
B) sinθurcosθuθ/r\sin \theta \frac { \partial u } { \partial r } - \cos \theta \frac { \partial u } { \partial \theta } / r
C) cosθursinθuθ/r\cos \theta \frac { \partial u } { \partial r } - \sin \theta \frac { \partial u } { \partial \theta } / r
D) cosθur+cosθuθ/r\cos \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta } / r
E) sinθur+cosθuθ\sin \theta \frac { \partial u } { \partial r } + \cos \theta \frac { \partial u } { \partial \theta }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
The relationships between Cartesian and spherical coordinates are Select all that apply.

A) r2=x2+y2r ^ { 2 } = x ^ { 2 } + y ^ { 2 }
B) tanϕ=y/x\tan \phi = y / x
C) x=rcosϕsinθx = r \cos \phi \sin \theta
D) y=rcosϕcosθy = r \cos \phi \cos \theta
E) z=rcosθz = r \cos \theta
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
In the previous three problems, the product solutions are

A) u=J0(nπr/3)cos(nπz/3)u = J _ { 0 } ( n \pi r / 3 ) \cos ( n \pi z / 3 )
B) u=J0(n2π2r/9)cos(nπz/3)u = J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \cos ( n \pi z / 3 )
C) u=J0(n2π2r/9)sin(nπz/3)u = J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \sin ( n \pi z / 3 )
D) u=J0(znr)cosh(zn(z3))u = J _ { 0 } \left( z _ { n } r \right) \cosh \left( z _ { n } ( z - 3 ) \right)
E) u=J0(znr/2)sinh(zn(z3)/2)u = J _ { 0 } \left( z _ { n } r / 2 \right) \sinh \left( z _ { n } ( z - 3 ) / 2 \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
Consider the steady-state temperature distribution in a circular cylinder of radius 2 and height 3, with zero temperature at r=2r = 2 and at z=3z = 3 and a temperature of 10 at z=0z = 0 . The mathematical model for this problem is

A) 2ur2+1rur2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
B) 2ur21rur2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
C) 2ur21r2ur+2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
D) 2ur2+1rur+2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
E) 2ur2+1r2ur+2uz2=0,u(2,z)=0,u(r,3)=0,u(r,0)=10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
In the problem 2ur2+2rur+1r22uθ2+cotθr2uθ=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 2 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } + \frac { \cot \theta } { r ^ { 2 } } \frac { \partial u } { \partial \theta } = 0 , separate variables, using u(r,θ)=R(r)Θ(θ)u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems for RR and Θ\Theta are

A) r2R+2rR+λR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
B) r2R+2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
C) r2R+2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θλsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } - \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
D) r2R2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } - 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θ+cos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } + \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
E) r2R+2rRλR=0,R(0)r ^ { 2 } R ^ { \prime \prime } + 2 r R ^ { \prime } - \lambda R = 0 , R ( 0 ) is bounded; sin(θ)Θcos(θ)Θ+λsin(θ)Θ=0,Θ\sin ( \theta ) \Theta ^ { \prime \prime } - \cos ( \theta ) \Theta ^ { \prime } + \lambda \sin ( \theta ) \Theta = 0,\Theta is bounded on [0,π][ 0 , \pi ] .
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
The Laplacian in polar coordinates is

A) 2ur2+1r2ur+1r2uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
B) 2ur2+1rur+1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
C) 2ur21rur+1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
D) 2ur2+1rur1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
E) 2ur21rur1r22uθ2\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
Consider the steady-state temperature distribution in a circular disc of radius CC centere at the origin, with temperature given as a function, f(θ)f ( \theta ) on the boundary. The mathematical model of this situation is

A) 2ur21rur+1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
B) 2ur2+1rur1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
C) 2ur21rur1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
D) 2ur2+1r2ur+1r2uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { 1 } { r } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
E) 2ur2+1rur+1r22uθ2=0,u(c,θ)=f(θ)\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 , u ( c , \theta ) = f ( \theta )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
In the previous four problems, the infinite series solution is (for certain values of the constants)

A) u=n1cnJ0(nπr/3)cos(nπz/3)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } ( n \pi r / 3 ) \cos ( n \pi z / 3 )
B) u=n1cnJ0(n2π2r/9)cos(nπz/3)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \cos ( n \pi z / 3 )
C) u=n1cnJ0(n2π2r/9)sin(nπz/3)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } \left( n ^ { 2 } \pi ^ { 2 } r / 9 \right) \sin ( n \pi z / 3 )
D) u=n1cnJ0(znr/2)sinh(zn(z3)/2)u = \sum _ { n - 1 } ^ { \infty } c _ { n } J _ { 0 } \left( z _ { n } r / 2 \right) \sinh \left( z _ { n } ( z - 3 ) / 2 \right)
E) u=n=1cnJ0(znr)cosh(zn(z3))u = \sum _ { n = 1 } ^ { \infty } c _ { n } J _ { 0 } \left( z _ { n } r \right) \cosh \left( z _ { n } ( z - 3 ) \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
In the three previous problems, the product solutions are

A) un=(anrn+bnrn)(cncos(nθ)+dnsin(nθ)),n=0,1,2,u _ { n } = \left( a _ { n } r ^ { n } + b _ { n } r ^ { - n } \right) \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 0,1,2 , \ldots
B) un=rn(cncos(nθ)+dnsin(nθ)),n=1,2,3,u _ { n } = r ^ { n } \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 1,2,3 , \ldots
C) un=rn(cncos(nθ)+dnsin(nθ)),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 0,1,2 , \ldots
D) un=rn(cnenθ+dnenθ),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 0,1,2 , \ldots
E) un=rn(cnenθ+dnenθ),n=1,2,3,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
The solution of r2R+rR+λR=0,R(0)=0,R(1)=0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 0 ) = 0 , R ( 1 ) = 0 is

A) λ=nπ,R=sin(nπlnr)\lambda = n \pi , R = \sin ( n \pi \ln r )
B) λ=(nπ)2,R=sin(nπlnr)\lambda = ( n \pi ) ^ { 2 } , R = \sin ( n \pi \ln r )
C) λ=(nπ)2,R=sin(nπlnr)+cos(nπlnr)\lambda = ( n \pi ) ^ { 2 } , R = \sin ( n \pi \ln r ) + \cos ( n \pi \ln r )
D) λ=nπ,R=sin(nπlnr)cos(nπlnr)\lambda = n \pi , R = \sin ( n \pi \ln r ) - \cos ( n \pi \ln r )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
In the previous problem, the solution of the eigenvalue problem is

A) λ=n(n+1),R=rn,n=1,2,3,\lambda = n ( n + 1 ) , R = r ^ { n } , n = 1,2,3 , \ldots
B) λ=n(n1),R=rn,n=1,2,3,\lambda = n ( n - 1 ) , R = r ^ { n } , n = 1,2,3 , \ldots
C) λ=n(n1),Θ=Pn(cosθ),n=1,2,3,\lambda = n ( n - 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
D) λ=n(n+1),Θ=Pn(cosθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \cos \theta ) , n = 1,2,3 , \ldots
E) λ=n(n+1),Θ=Pn(sinθ),n=1,2,3,\lambda = n ( n + 1 ) , \Theta = P _ { n } ( \sin \theta ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
In the previous two problems, the product solutions are

A) un=rnPn(cosθ)u _ { n } = r ^ { n } P _ { n } ( \cos \theta )
B) un=rnPn(cosθ)u _ { n } = r ^ { - n } P _ { n } ( \cos \theta )
C) un=rnPn(sinθ)u _ { n } = r ^ { n } P _ { n } ( \sin \theta )
D) un=rnPn(sinθ)u _ { n } = r ^ { - n } P _ { n } ( \sin \theta )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
In the previous problem, after separating variables, the resulting problems are

A) rRR+λrR=0,R(0)r R ^ { \prime \prime } - R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,Z+λZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } + \lambda Z = 0 , Z ( 3 ) = 0
B) rR+RλrR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } - \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,ZλZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
C) rRRλrR=0,R(0)r R ^ { \prime \prime } - R ^ { \prime } - \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,ZλZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
D) rR+R+λrR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,ZλZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } - \lambda Z = 0 , Z ( 3 ) = 0
E) rR+R+λrR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + \lambda r R = 0 , R ( 0 ) is bounded, R(2)=0,Z+λZ=0,Z(3)=0R ( 2 ) = 0 , Z ^ { \prime \prime } + \lambda Z = 0 , Z ( 3 ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
When changing from Cartesian to spherical coordinates, ϕx=\frac { \partial \phi } { \partial x } =

A) sinϕ/(rsinθ)- \sin \phi / ( r \sin \theta )
B) sinϕ/(rsinθ)\sin \phi / ( r \sin \theta )
C) cosϕ/(rsinθ)- \cos \phi / ( r \sin \theta )
D) cosϕ/(rcosθ)\cos \phi / ( r \cos \theta )
E) sinϕ/(rcosθ)\sin \phi / ( r \cos \theta )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
In the previous four problems, the infinite series solution of the original problem is u=A0+n=1rn(Ancos(nθ)+Bnsin(nθ))u = A _ { 0 } + \sum _ { n = 1 } ^ { \infty } r ^ { n } \left( A _ { n } \cos ( n \theta ) + B _ { n } \sin ( n \theta ) \right) where Select all that apply.

A) A0=02πf(θ)dθl(2π)A _ { 0 } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) d \theta l ( 2 \pi )
B) An=02πf(θ)sin(nθ)dθ/(cnπ)A _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \sin ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
C) An=02πf(θ)cos(nθ)dθ/(cnπ)A _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
D) Bn=02πf(θ)sin(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \sin ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
E) Bn=02πf(θ)cos(nθ)dθ/(cnπ)B _ { n } = \int _ { 0 } ^ { 2 \pi } f ( \theta ) \cos ( n \theta ) d \theta / \left( c ^ { n } \pi \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
In the previous problem, the solution of the eigenvalue problem is

A) λ=zn2/4\lambda = z _ { n } ^ { 2 } / 4 , where J0(zn)=0;R=J0(znr/2)J _ { 0 } \left( z _ { n } \right) = 0 ; R = J _ { 0 } \left( z _ { n } r / 2 \right)
B) λ=zn2\lambda = z _ { n } ^ { 2 } , where J0(zn)=0;R=J0(znr)J _ { 0 } \left( z _ { n } \right) = 0 ; R = J _ { 0 } \left( z _ { n } r \right)
C) λ=nπ/9,Z=cos(nπz/3)\lambda = n \pi / 9 , Z = \cos ( n \pi z / 3 )
D) λ=n2π2/9,Z=cos(nπz/3)\lambda = n ^ { 2 } \pi ^ { 2 } / 9 , Z = \cos ( n \pi z / 3 )
E) λ=n2π2/9,Z=sin(nπz/3)\lambda = n ^ { 2 } \pi ^ { 2 } / 9 , Z = \sin ( n \pi z / 3 )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
When changing from Cartesian to spherical coordinates, rz=\frac { \partial r } { \partial z } =

A) cosϕ\cos \phi
B) cosθ\cos \theta
C) tanθ\tan \theta
D) sinϕ\sin \phi
E) sinθ\sin \theta
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.