Deck 10: Plane Autonomous Systems

Full screen (f)
exit full mode
Question
The geometric configuration of the solutions of dxdt=3x+2y,dydt=4xy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = 4 x - y in the phase plane is

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Use Space or
up arrow
down arrow
to flip the card.
Question
Assume a bead of mass mm slides along the curve y=f(x)y = f ( x ) . Also assume that there is a damping force acting in the direction opposite to the velocity and proportional to the velocity, with proportionality constant β\beta . The differential equation that describes the horizontal position of the bead is

A) md2xdt2=mgf(x)/(1[f(x)]2)βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 - \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
B) md2xdt2=mgf(x)/(1[f(x)]2)+βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 - \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) + \beta \frac { d x } { d t }
C) md2xdt2=mgf(x)/(1+[f(x)]2)βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
D) md2xdt2=mgf(x)/(1+[f(x)]2)βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
E) md2xdt2=mgf(x)/(1+[f(x)]2)+βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) + \beta \frac { d x } { d t }
Question
The values of CC that make the system dxdt=3x+2y,dydt=cxy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = - c x - y stable are

A) c>3/2c > - 3 / 2
B) c<3/2c < - 3 / 2
C) It is locally stable for all values of CC .
D) It is unstable for all values of CC .
E) c>0c > 0
Question
The constant solution of dxdt=2x2+y21,dydt=x2y\frac { d x } { d t } = 2 x ^ { 2 } + y ^ { 2 } - 1 , \frac { d y } { d t } = x - 2 y are

A) x=2/3,y=1/3x = 2 / 3 , y = 1 / 3
B) x=2/3,y=1/3x = 2 / 3 , y = 1 / 3 and x=2/3,y=1/3x = - 2 / 3 , y = - 1 / 3
C) x=2/3,y=1/3x = - 2 / 3 , y = - 1 / 3
D) x=2/7,y=1/7x = 2 / \sqrt { 7 } , y = 1 / \sqrt { 7 }
E) x=2/7,y=1/7x = 2 / \sqrt { 7 } , y = 1 / \sqrt { 7 } and x=2/7,y=1/7x = - 2 / \sqrt { 7 } , y = - 1 / \sqrt { 7 }
Question
Which of the following systems are linear? Select all that apply.

A) dxdt=x+y,dydt=2t3sint\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 t - 3 \sin t
B) dxdt=3.5x+2y,dydt=2x5y\frac { d x } { d t } = 3.5 x + 2 y , \frac { d y } { d t } = 2 x - 5 y
C) dxdt=x+1/y,dydt=2xet3y\frac { d x } { d t } = x + 1 / y , \frac { d y } { d t } = 2 x e ^ { t } - 3 y
D) dxdt=0,dydt=2cosx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \cos x - 3 y
E) dxdt=t2+1,dydt=15x4y\frac { d x } { d t } = t ^ { 2 } + 1 , \frac { d y } { d t } = 15 x - 4 y
Question
The critical point (0,0)( 0,0 ) of the system dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Question
The critical point (0,0)( 0,0 ) of the system dxdt=5x+y,dydt=3x+3y\frac { d x } { d t } = 5 x + y , \frac { d y } { d t } = 3 x + 3 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Question
The solution of the system dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y is

A) x=c1e2t(2cos(2t)+4sin(2t))+c2e2t(4cos(2t)2sin(2t))x = c _ { 1 } e ^ { - 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t)+4c2e2tsin(2t)y = 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) + 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
B) x=c1e2t(2cos(2t)+4sin(2t))+c2e2t(4cos(2t)2sin(2t))x = c _ { 1 } e ^ { 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { 2 t } \sin ( 2 t )
C) x=c1e2t(4cos(2t)+2sin(2t))+c2e2t(2cos(2t)+4sin(2t))x = c _ { 1 } e ^ { - 2 t } ( 4 \cos ( 2 t ) + 2 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( - 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
D) x=c1e2t(2cos(2t)+4sin(2t))+c2e2t(4cos(2t)2sin(2t))x = c _ { 1 } e ^ { - 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
E) x=c1e2t(4cos(2t)+2sin(2t))+c2e2t(2cos(2t)+4sin(2t))x = c _ { 1 } e ^ { 2 t } ( 4 \cos ( 2 t ) + 2 \sin ( 2 t ) ) + c _ { 2 } e ^ { 2 t } ( - 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { 2 t } \sin ( 2 t )
Question
The Jacobian matrix of the system x=x3y38,y=8yx ^ { \prime } = x ^ { 3 } - y ^ { 3 } - 8 , y ^ { \prime } = 8 y at the critical point (2,0)( 2,0 )

A) A=[3x23y280]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 3 y ^ { 2 } \\8 & 0\end{array} \right]
B) A=[3x23y208]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 3 y ^ { 2 } \\0 & 8\end{array} \right]
C) A=[3x23y208]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & 3 y ^ { 2 } \\0 & 8\end{array} \right]
D) A=[12008]A = \left[ \begin{array} { c c } 12 & 0 \\0 & 8\end{array} \right]
E) A=[12080]A = \left[ \begin{array} { c c } 12 & 0 \\8 & 0\end{array} \right]
Question
The solution of the system dxdt=5x+y,dydt=3x+3y\frac { d x } { d t } = 5 x + y , \frac { d y } { d t } = 3 x + 3 y is

A) x=c1e6t+c2e2t,y=c1e6t3c2e2tx = c _ { 1 } e ^ { - 6 t } + c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { - 6 t } - 3 c _ { 2 } e ^ { - 2 t }
B) x=c1e6t+c2e2t,y=c1e6t3c2e2tx = c _ { 1 } e ^ { 6 t } + c _ { 2 } e ^ { 2 t } , y = c _ { 1 } e ^ { 6 t } - 3 c _ { 2 } e ^ { 2 t }
C) x=c1e6t3c2e2t,y=c1e6t+c2e2tx = c _ { 1 } e ^ { - 6 t } - 3 c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { - 6 t } + c _ { 2 } e ^ { - 2 t }
D) x=c1e6t3c2e2t,y=c1e6t+c2e2tx = c _ { 1 } e ^ { 6 t } - 3 c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { 6 t } + c _ { 2 } e ^ { - 2 t }
E) x=c1e6t+c2e2t,y=c1e6t3c2e2tx = c _ { 1 } e ^ { 6 t } + c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { 6 t } - 3 c _ { 2 } e ^ { - 2 t }
Question
The initial value problem xx+tx=0,x(0)=1,x(0)=2x ^ { \prime \prime } - x ^ { \prime } + t x = 0 , x ( 0 ) = 1 , x ^ { \prime } ( 0 ) = 2 can be rewritten as the system

A) x=x,u=utx,x(0)=1,u(0)=2x ^ { \prime } = x , u ^ { \prime } = u - t x , x ( 0 ) = 1 , u ( 0 ) = 2
B) x=x,u=xtu,x(0)=1,u(0)=2x ^ { \prime } = x , u ^ { \prime } = x - t u , x ( 0 ) = 1 , u ( 0 ) = 2
C) x=u,u=u+tx,x(0)=1,u(0)=2x ^ { \prime } = u , u ^ { \prime } = u + t x , x ( 0 ) = 1 , u ( 0 ) = 2
D) x=u,u=x+tu,x(0)=1,u(0)=2x ^ { \prime } = u , u ^ { \prime } = x + t u , x ( 0 ) = 1 , u ( 0 ) = 2
E) x=u,u=utx,x(0)=1,u(0)=2x ^ { \prime } = u , u ^ { \prime } = u - t x , x ( 0 ) = 1 , u ( 0 ) = 2
Question
The geometric configuration of the solutions of dxdt=5x+y,dydt=3x+3y\frac { d x } { d t } = 5 x + y , \frac { d y } { d t } = 3 x + 3 y in the phase plane is

A) stable spiral point
B) unstable spiral point
C) stable node
D) unstable node
E) saddle point
Question
The critical points of the system dxdt=2x+y3,dydt=2x3y7\frac { d x } { d t } = 2 x + y - 3 , \frac { d y } { d t } = 2 x - 3 y - 7 are

A) y=1y = - 1
B) x=2x = 2
C) (2,1)( 2 , - 1 )
D) (1,2)( - 1,2 )
E) (3,7)( - 3 , - 7 )
Question
Consider the differential equation x=secxx ^ { \prime } = \sec x . The point x=0x = 0 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Question
The critical point (0,0)( 0,0 ) of the system dxdt=3x+2y,dydt=4xy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = 4 x - y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Question
Which of the following systems are autonomous? Select all that apply.

A) dxdt=x+y,dydt=2t3sint\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 t - 3 \sin t
B) dxdt=3.5x+2y,dydt=2x5y\frac { d x } { d t } = 3.5 x + 2 y , \frac { d y } { d t } = 2 x - 5 y
C) dxdt=x+y,dydt=2xet3y\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 x e ^ { t } - 3 y
D) dxdt=0,dydt=2cosx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \cos x - 3 y
E) dxdt=t2+1,dydt=15x4y\frac { d x } { d t } = t ^ { 2 } + 1 , \frac { d y } { d t } = 15 x - 4 y
Question
The critical points of the system x=x3y28,y=8yx ^ { \prime } = x ^ { 3 } - y ^ { 2 } - 8 , y ^ { \prime } = 8 y are

A) (2,0),0,2)( 2,0 ) , 0,2 )
B) (2,0),(0,2)( - 2,0 ) , ( 0 , - 2 )
C) (0,2)( 0,2 )
D) (0,2)( 0 , - 2 )
E) none of the above
Question
The solution of the system dxdt=3x+2y,dydt=4xy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = 4 x - y is

A) x=c1et+c2e5t,y=2c1etc2e5tx = c _ { 1 } e ^ { t } + c _ { 2 } e ^ { - 5 t } , y = 2 c _ { 1 } e ^ { t } - c _ { 2 } e ^ { - 5 t }
B) x=c1et+c2e5t,y=2c1etc2e5tx = c _ { 1 } e ^ { t } + c _ { 2 } e ^ { 5 t } , y = 2 c _ { 1 } e ^ { t } - c _ { 2 } e ^ { 5 t }
C) x=2c1et+c2e5t,y=c1etc2e5tx = 2 c _ { 1 } e ^ { t } + c _ { 2 } e ^ { - 5 t } , y = c _ { 1 } e ^ { t } - c _ { 2 } e ^ { - 5 t }
D) x=2c1et+c2e5t,y=c1etc2e5tx = 2 c _ { 1 } e ^ { t } + c _ { 2 } e ^ { 5 t } , y = c _ { 1 } e ^ { t } - c _ { 2 } e ^ { 5 t }
E) x=2c1et+c2e5t,y=2c1etc2e5tx = 2 c _ { 1 } e ^ { t } + c _ { 2 } e ^ { - 5 t } , y = 2 c _ { 1 } e ^ { t } - c _ { 2 } e ^ { - 5 t }
Question
The geometric configuration of the solutions of dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y in the phase plane is

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Question
Consider the differential equation x=sinx+cosxx ^ { \prime } = \sin x + \cos x . The point x=3π/4x = 3 \pi / 4 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Question
The geometric configuration of the solutions of dxdt=4xy,dydt=x+2y\frac { d x } { d t } = 4 x - y , \frac { d y } { d t } = x + 2 y in the phase plane is

A) degenerate stable node
B) degenerate unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Question
The differential equation xxex=0x ^ { \prime \prime } - x ^ { \prime } e ^ { x } = 0 can be rewritten as the system

A) x=x,u=xexx ^ { \prime } = x , u ^ { \prime } = x e ^ { x }
B) x=x,u=uexx ^ { \prime } = x , u ^ { \prime } = u e ^ { x }
C) x=u,u=xeux ^ { \prime } = u , u ^ { \prime } = x e ^ { u }
D) x=u,u=xexx ^ { \prime } = u , u ^ { \prime } = x e ^ { x }
E) x=u,u=uexx ^ { \prime } = u , u ^ { \prime } = u e ^ { x }
Question
The Jacobian matrix of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x at the critical point (0,2)( 0,2 )

A) A=[0450]A = \left[ \begin{array} { c c } 0 & - 4 \\5 & 0\end{array} \right]
B) A=[0450]A = \left[ \begin{array} { l l } 0 & 4 \\5 & 0\end{array} \right]
C) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & 2 y \\5 & 0\end{array} \right]
D) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\5 & 0\end{array} \right]
E) A=[3x22y05]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\0 & 5\end{array} \right]
Question
The critical point (0,0)( 0,0 ) of the system dxdt=4xy,dydt=x+2y\frac { d x } { d t } = 4 x - y , \frac { d y } { d t } = x + 2 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Question
Consider the differential equation x=tanxx ^ { \prime } = \tan x . The point x=0x = 0 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Question
The critical point (0,0)( 0,0 ) of the system dxdt=6x5y,dydt=3x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 3 x + 2 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Question
Consider the differential equation x=cotxx ^ { \prime } = \cot x . The point x=π/2x = \pi / 2 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Question
The solution of the system dxdt=6x5y,dydt=3x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 3 x + 2 y is

A) x=3c1e3t+c2et,y=5c1e3tc2etx = 3 c _ { 1 } e ^ { - 3 t } + c _ { 2 } e ^ { - t } , y = - 5 c _ { 1 } e ^ { - 3 t } - c _ { 2 } e ^ { - t }
B) x=3c1e3tc2et,y=5c1e3t+c2etx = 3 c _ { 1 } e ^ { 3 t } - c _ { 2 } e ^ { - t } , y = - 5 c _ { 1 } e ^ { 3 t } + c _ { 2 } e ^ { - t }
C) x=3c1e3t+c2et,y=5c1e3tc2etx = 3 c _ { 1 } e ^ { 3 t } + c _ { 2 } e ^ { t } , y = - 5 c _ { 1 } e ^ { 3 t } - c _ { 2 } e ^ { t }
D) x=5c1e3t+c2et,y=3c1e3tc2etx = 5 c _ { 1 } e ^ { 3 t } + c _ { 2 } e ^ { t } , y = - 3 c _ { 1 } e ^ { 3 t } - c _ { 2 } e ^ { t }
E) x=5c1e3t+c2et,y=3c1e3tc2etx = 5 c _ { 1 } e ^ { - 3 t } + c _ { 2 } e ^ { - t } , y = - 3 c _ { 1 } e ^ { - 3 t } - c _ { 2 } e ^ { - t }
Question
The values of cc that make the system dxdt=3x+2y,dydt=cx+y\frac { d x } { d t } = 3 x + 2 y , \frac { d y } { d t } = - c x + y stable are

A) c>3/2c > - 3 / 2
B) c<3/2c < - 3 / 2
C) It is stable for all values of cc .
D) It is unstable for all values of cc .
E) c>0c > 0
Question
The geometric configuration of the solutions of dxdt=6x5y,dydt=3x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 3 x + 2 y in the phase plane is

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Question
The critical points of the system dxdt=2x+y2,dydt=2x3y\frac { d x } { d t } = 2 x + y ^ { 2 } , \frac { d y } { d t } = 2 x - 3 y are

A) y=0,y=3y = 0 , y = - 3
B) x=0,x=9/2x = 0 , x = - 9 / 2
C) (0,0)( 0,0 )
D) (0,0),(9/2,3)( 0,0 ) , ( - 9 / 2 , - 3 )
E) (9/2,3)( - 9 / 2 , - 3 )
Question
Which of the following systems are autonomous? Select all that apply.

A) dxdt=x+y2,dydt=2x3y\frac { d x } { d t } = x + y ^ { 2 } , \frac { d y } { d t } = 2 x - 3 y
B) dxdt=x+t,dydt=2x3y\frac { d x } { d t } = x + t , \frac { d y } { d t } = 2 x - 3 y
C) dxdt=x+y,dydt=2x3y\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 x - 3 y
D) dxdt=0,dydt=2sinx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \sin x - 3 y
E) dxdt=t+1,dydt=15x4y\frac { d x } { d t } = t + 1 , \frac { d y } { d t } = 15 x - 4 y
Question
Which of the following systems are linear? Select all that apply.

A) dxdt=x+y2,dydt=2x3y\frac { d x } { d t } = x + y ^ { 2 } , \frac { d y } { d t } = 2 x - 3 y
B) dxdt=x+t,dydt=2x3y\frac { d x } { d t } = x + t , \frac { d y } { d t } = 2 x - 3 y
C) dxdt=x+y,dydt=2x3y\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 x - 3 y
D) dxdt=0,dydt=2sinx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \sin x - 3 y
E) dxdt=t+1,dydt=15x4y\frac { d x } { d t } = t + 1 , \frac { d y } { d t } = 15 x - 4 y
Question
The Jacobian matrix of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x at the critical point (0,2)( 0 , - 2 )

A) A=[0450]A = \left[ \begin{array} { c c } 0 & - 4 \\5 & 0\end{array} \right]
B) A=[0450]A = \left[ \begin{array} { l l } 0 & 4 \\5 & 0\end{array} \right]
C) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & 2 y \\5 & 0\end{array} \right]
D) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\5 & 0\end{array} \right]
E) A=[3x22y05]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\0 & 5\end{array} \right]
Question
The critical point (0,2)( 0,2 ) of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x is a

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) center point
Question
The solution of the system dxdt=4xy,dydt=x+2y\frac { d x } { d t } = 4 x - y , \frac { d y } { d t } = x + 2 y is

A) x=c1e3t+c2(t+1)e3t,y=c1e3t+c2te3tx = c _ { 1 } e ^ { - 3 t } + c _ { 2 } ( t + 1 ) e ^ { - 3 t } , y = c _ { 1 } e ^ { - 3 t } + c _ { 2 } t e ^ { - 3 t }
B) x=c1e3t+c2te3t,y=c1e3t+c2(t+1)e3tx = c _ { 1 } e ^ { - 3 t } + c _ { 2 } t e ^ { - 3 t } , y = c _ { 1 } e ^ { - 3 t } + c _ { 2 } ( t + 1 ) e ^ { - 3 t }
C) x=c1e3t+c2te3t,y=c1e3t+c2(t+1)e3tx = c _ { 1 } e ^ { 3 t } + c _ { 2 } t e ^ { 3 t } , y = c _ { 1 } e ^ { 3 t } + c _ { 2 } ( t + 1 ) e ^ { 3 t }
D) x=c1e3t+c2(t+1)e3t,y=c1e3t+c2te3tx = c _ { 1 } e ^ { 3 t } + c _ { 2 } ( t + 1 ) e ^ { 3 t } , y = c _ { 1 } e ^ { 3 t } + c _ { 2 } t e ^ { 3 t }
E) x=c1e3t+c2(t+1)e3t,y=c1e3tc2te3tx = c _ { 1 } e ^ { 3 t } + c _ { 2 } ( t + 1 ) e ^ { 3 t } , y = - c _ { 1 } e ^ { 3 t } - c _ { 2 } t e ^ { 3 t }
Question
The critical point (0,2)( 0 , - 2 ) of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x is a

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Question
The only constant solution of dxdt=5xy4,dydt=x+2y3\frac { d x } { d t } = 5 x - y - 4 , \frac { d y } { d t } = x + 2 y - 3 is

A) x=1,y=1x = 1 , y = 1
B) x=1x = 1
C) x=1x = - 1
D) x=1,y=1x = - 1 , y = - 1
E) y=1y = 1
Question
Assume that x(t)x ( t ) and y(t)y ( t ) represent the populations of two competing species at time tt . The Lotka-Volterra competition model is

A) dxdt=r1x(K1+xa12y)/K1,dydt=r2y(K2ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } + x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
B) dxdt=r1x(K1x+a12y)/K1,dydt=r2y(K2ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x + a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
C) dxdt=r1x(K1xa12y)/K1,dydt=r2y(K2ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
D) dxdt=r1x(K1xa12y)/K1,dydt=r2y(K2+ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } + y - a _ { 21 } y \right) / K _ { 2 }
E) dxdt=r1x(K1xa12y)/K1,dydt=r2y(K2y+a21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y + a _ { 21 } y \right) / K _ { 2 }
Question
The critical points of the system x=x3y38,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 3 } - 8 , y ^ { \prime } = 5 x are

A) (2,0),(0,2)( 2,0 ) , ( 0,2 )
B) (2,0),(0,2)( - 2,0 ) , ( 0 , - 2 )
C) (0,2)( 0,2 )
D) (0,2)( 0 , - 2 )
E) none of the above
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Plane Autonomous Systems
1
The geometric configuration of the solutions of dxdt=3x+2y,dydt=4xy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = 4 x - y in the phase plane is

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
saddle point
2
Assume a bead of mass mm slides along the curve y=f(x)y = f ( x ) . Also assume that there is a damping force acting in the direction opposite to the velocity and proportional to the velocity, with proportionality constant β\beta . The differential equation that describes the horizontal position of the bead is

A) md2xdt2=mgf(x)/(1[f(x)]2)βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 - \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
B) md2xdt2=mgf(x)/(1[f(x)]2)+βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 - \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) + \beta \frac { d x } { d t }
C) md2xdt2=mgf(x)/(1+[f(x)]2)βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
D) md2xdt2=mgf(x)/(1+[f(x)]2)βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
E) md2xdt2=mgf(x)/(1+[f(x)]2)+βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) + \beta \frac { d x } { d t }
md2xdt2=mgf(x)/(1+[f(x)]2)βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
3
The values of CC that make the system dxdt=3x+2y,dydt=cxy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = - c x - y stable are

A) c>3/2c > - 3 / 2
B) c<3/2c < - 3 / 2
C) It is locally stable for all values of CC .
D) It is unstable for all values of CC .
E) c>0c > 0
c>3/2c > - 3 / 2
4
The constant solution of dxdt=2x2+y21,dydt=x2y\frac { d x } { d t } = 2 x ^ { 2 } + y ^ { 2 } - 1 , \frac { d y } { d t } = x - 2 y are

A) x=2/3,y=1/3x = 2 / 3 , y = 1 / 3
B) x=2/3,y=1/3x = 2 / 3 , y = 1 / 3 and x=2/3,y=1/3x = - 2 / 3 , y = - 1 / 3
C) x=2/3,y=1/3x = - 2 / 3 , y = - 1 / 3
D) x=2/7,y=1/7x = 2 / \sqrt { 7 } , y = 1 / \sqrt { 7 }
E) x=2/7,y=1/7x = 2 / \sqrt { 7 } , y = 1 / \sqrt { 7 } and x=2/7,y=1/7x = - 2 / \sqrt { 7 } , y = - 1 / \sqrt { 7 }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
Which of the following systems are linear? Select all that apply.

A) dxdt=x+y,dydt=2t3sint\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 t - 3 \sin t
B) dxdt=3.5x+2y,dydt=2x5y\frac { d x } { d t } = 3.5 x + 2 y , \frac { d y } { d t } = 2 x - 5 y
C) dxdt=x+1/y,dydt=2xet3y\frac { d x } { d t } = x + 1 / y , \frac { d y } { d t } = 2 x e ^ { t } - 3 y
D) dxdt=0,dydt=2cosx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \cos x - 3 y
E) dxdt=t2+1,dydt=15x4y\frac { d x } { d t } = t ^ { 2 } + 1 , \frac { d y } { d t } = 15 x - 4 y
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
The critical point (0,0)( 0,0 ) of the system dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
The critical point (0,0)( 0,0 ) of the system dxdt=5x+y,dydt=3x+3y\frac { d x } { d t } = 5 x + y , \frac { d y } { d t } = 3 x + 3 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
The solution of the system dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y is

A) x=c1e2t(2cos(2t)+4sin(2t))+c2e2t(4cos(2t)2sin(2t))x = c _ { 1 } e ^ { - 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t)+4c2e2tsin(2t)y = 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) + 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
B) x=c1e2t(2cos(2t)+4sin(2t))+c2e2t(4cos(2t)2sin(2t))x = c _ { 1 } e ^ { 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { 2 t } \sin ( 2 t )
C) x=c1e2t(4cos(2t)+2sin(2t))+c2e2t(2cos(2t)+4sin(2t))x = c _ { 1 } e ^ { - 2 t } ( 4 \cos ( 2 t ) + 2 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( - 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
D) x=c1e2t(2cos(2t)+4sin(2t))+c2e2t(4cos(2t)2sin(2t))x = c _ { 1 } e ^ { - 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
E) x=c1e2t(4cos(2t)+2sin(2t))+c2e2t(2cos(2t)+4sin(2t))x = c _ { 1 } e ^ { 2 t } ( 4 \cos ( 2 t ) + 2 \sin ( 2 t ) ) + c _ { 2 } e ^ { 2 t } ( - 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) , y=4c1e2tcos(2t)4c2e2tsin(2t)y = - 4 c _ { 1 } e ^ { 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { 2 t } \sin ( 2 t )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
The Jacobian matrix of the system x=x3y38,y=8yx ^ { \prime } = x ^ { 3 } - y ^ { 3 } - 8 , y ^ { \prime } = 8 y at the critical point (2,0)( 2,0 )

A) A=[3x23y280]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 3 y ^ { 2 } \\8 & 0\end{array} \right]
B) A=[3x23y208]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 3 y ^ { 2 } \\0 & 8\end{array} \right]
C) A=[3x23y208]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & 3 y ^ { 2 } \\0 & 8\end{array} \right]
D) A=[12008]A = \left[ \begin{array} { c c } 12 & 0 \\0 & 8\end{array} \right]
E) A=[12080]A = \left[ \begin{array} { c c } 12 & 0 \\8 & 0\end{array} \right]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
The solution of the system dxdt=5x+y,dydt=3x+3y\frac { d x } { d t } = 5 x + y , \frac { d y } { d t } = 3 x + 3 y is

A) x=c1e6t+c2e2t,y=c1e6t3c2e2tx = c _ { 1 } e ^ { - 6 t } + c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { - 6 t } - 3 c _ { 2 } e ^ { - 2 t }
B) x=c1e6t+c2e2t,y=c1e6t3c2e2tx = c _ { 1 } e ^ { 6 t } + c _ { 2 } e ^ { 2 t } , y = c _ { 1 } e ^ { 6 t } - 3 c _ { 2 } e ^ { 2 t }
C) x=c1e6t3c2e2t,y=c1e6t+c2e2tx = c _ { 1 } e ^ { - 6 t } - 3 c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { - 6 t } + c _ { 2 } e ^ { - 2 t }
D) x=c1e6t3c2e2t,y=c1e6t+c2e2tx = c _ { 1 } e ^ { 6 t } - 3 c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { 6 t } + c _ { 2 } e ^ { - 2 t }
E) x=c1e6t+c2e2t,y=c1e6t3c2e2tx = c _ { 1 } e ^ { 6 t } + c _ { 2 } e ^ { - 2 t } , y = c _ { 1 } e ^ { 6 t } - 3 c _ { 2 } e ^ { - 2 t }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
The initial value problem xx+tx=0,x(0)=1,x(0)=2x ^ { \prime \prime } - x ^ { \prime } + t x = 0 , x ( 0 ) = 1 , x ^ { \prime } ( 0 ) = 2 can be rewritten as the system

A) x=x,u=utx,x(0)=1,u(0)=2x ^ { \prime } = x , u ^ { \prime } = u - t x , x ( 0 ) = 1 , u ( 0 ) = 2
B) x=x,u=xtu,x(0)=1,u(0)=2x ^ { \prime } = x , u ^ { \prime } = x - t u , x ( 0 ) = 1 , u ( 0 ) = 2
C) x=u,u=u+tx,x(0)=1,u(0)=2x ^ { \prime } = u , u ^ { \prime } = u + t x , x ( 0 ) = 1 , u ( 0 ) = 2
D) x=u,u=x+tu,x(0)=1,u(0)=2x ^ { \prime } = u , u ^ { \prime } = x + t u , x ( 0 ) = 1 , u ( 0 ) = 2
E) x=u,u=utx,x(0)=1,u(0)=2x ^ { \prime } = u , u ^ { \prime } = u - t x , x ( 0 ) = 1 , u ( 0 ) = 2
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
The geometric configuration of the solutions of dxdt=5x+y,dydt=3x+3y\frac { d x } { d t } = 5 x + y , \frac { d y } { d t } = 3 x + 3 y in the phase plane is

A) stable spiral point
B) unstable spiral point
C) stable node
D) unstable node
E) saddle point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
The critical points of the system dxdt=2x+y3,dydt=2x3y7\frac { d x } { d t } = 2 x + y - 3 , \frac { d y } { d t } = 2 x - 3 y - 7 are

A) y=1y = - 1
B) x=2x = 2
C) (2,1)( 2 , - 1 )
D) (1,2)( - 1,2 )
E) (3,7)( - 3 , - 7 )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
Consider the differential equation x=secxx ^ { \prime } = \sec x . The point x=0x = 0 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
The critical point (0,0)( 0,0 ) of the system dxdt=3x+2y,dydt=4xy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = 4 x - y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
Which of the following systems are autonomous? Select all that apply.

A) dxdt=x+y,dydt=2t3sint\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 t - 3 \sin t
B) dxdt=3.5x+2y,dydt=2x5y\frac { d x } { d t } = 3.5 x + 2 y , \frac { d y } { d t } = 2 x - 5 y
C) dxdt=x+y,dydt=2xet3y\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 x e ^ { t } - 3 y
D) dxdt=0,dydt=2cosx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \cos x - 3 y
E) dxdt=t2+1,dydt=15x4y\frac { d x } { d t } = t ^ { 2 } + 1 , \frac { d y } { d t } = 15 x - 4 y
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
The critical points of the system x=x3y28,y=8yx ^ { \prime } = x ^ { 3 } - y ^ { 2 } - 8 , y ^ { \prime } = 8 y are

A) (2,0),0,2)( 2,0 ) , 0,2 )
B) (2,0),(0,2)( - 2,0 ) , ( 0 , - 2 )
C) (0,2)( 0,2 )
D) (0,2)( 0 , - 2 )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
The solution of the system dxdt=3x+2y,dydt=4xy\frac { d x } { d t } = - 3 x + 2 y , \frac { d y } { d t } = 4 x - y is

A) x=c1et+c2e5t,y=2c1etc2e5tx = c _ { 1 } e ^ { t } + c _ { 2 } e ^ { - 5 t } , y = 2 c _ { 1 } e ^ { t } - c _ { 2 } e ^ { - 5 t }
B) x=c1et+c2e5t,y=2c1etc2e5tx = c _ { 1 } e ^ { t } + c _ { 2 } e ^ { 5 t } , y = 2 c _ { 1 } e ^ { t } - c _ { 2 } e ^ { 5 t }
C) x=2c1et+c2e5t,y=c1etc2e5tx = 2 c _ { 1 } e ^ { t } + c _ { 2 } e ^ { - 5 t } , y = c _ { 1 } e ^ { t } - c _ { 2 } e ^ { - 5 t }
D) x=2c1et+c2e5t,y=c1etc2e5tx = 2 c _ { 1 } e ^ { t } + c _ { 2 } e ^ { 5 t } , y = c _ { 1 } e ^ { t } - c _ { 2 } e ^ { 5 t }
E) x=2c1et+c2e5t,y=2c1etc2e5tx = 2 c _ { 1 } e ^ { t } + c _ { 2 } e ^ { - 5 t } , y = 2 c _ { 1 } e ^ { t } - c _ { 2 } e ^ { - 5 t }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
The geometric configuration of the solutions of dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y in the phase plane is

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
Consider the differential equation x=sinx+cosxx ^ { \prime } = \sin x + \cos x . The point x=3π/4x = 3 \pi / 4 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
The geometric configuration of the solutions of dxdt=4xy,dydt=x+2y\frac { d x } { d t } = 4 x - y , \frac { d y } { d t } = x + 2 y in the phase plane is

A) degenerate stable node
B) degenerate unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
The differential equation xxex=0x ^ { \prime \prime } - x ^ { \prime } e ^ { x } = 0 can be rewritten as the system

A) x=x,u=xexx ^ { \prime } = x , u ^ { \prime } = x e ^ { x }
B) x=x,u=uexx ^ { \prime } = x , u ^ { \prime } = u e ^ { x }
C) x=u,u=xeux ^ { \prime } = u , u ^ { \prime } = x e ^ { u }
D) x=u,u=xexx ^ { \prime } = u , u ^ { \prime } = x e ^ { x }
E) x=u,u=uexx ^ { \prime } = u , u ^ { \prime } = u e ^ { x }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
The Jacobian matrix of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x at the critical point (0,2)( 0,2 )

A) A=[0450]A = \left[ \begin{array} { c c } 0 & - 4 \\5 & 0\end{array} \right]
B) A=[0450]A = \left[ \begin{array} { l l } 0 & 4 \\5 & 0\end{array} \right]
C) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & 2 y \\5 & 0\end{array} \right]
D) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\5 & 0\end{array} \right]
E) A=[3x22y05]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\0 & 5\end{array} \right]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
The critical point (0,0)( 0,0 ) of the system dxdt=4xy,dydt=x+2y\frac { d x } { d t } = 4 x - y , \frac { d y } { d t } = x + 2 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
Consider the differential equation x=tanxx ^ { \prime } = \tan x . The point x=0x = 0 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
The critical point (0,0)( 0,0 ) of the system dxdt=6x5y,dydt=3x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 3 x + 2 y is Select all that apply.

A) asymptotically stable
B) stable but not asymptotically stable
C) unstable
D) an attractor
E) a repeller
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
Consider the differential equation x=cotxx ^ { \prime } = \cot x . The point x=π/2x = \pi / 2 is

A) a stable critical point
B) an unstable critical point
C) not a critical point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
The solution of the system dxdt=6x5y,dydt=3x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 3 x + 2 y is

A) x=3c1e3t+c2et,y=5c1e3tc2etx = 3 c _ { 1 } e ^ { - 3 t } + c _ { 2 } e ^ { - t } , y = - 5 c _ { 1 } e ^ { - 3 t } - c _ { 2 } e ^ { - t }
B) x=3c1e3tc2et,y=5c1e3t+c2etx = 3 c _ { 1 } e ^ { 3 t } - c _ { 2 } e ^ { - t } , y = - 5 c _ { 1 } e ^ { 3 t } + c _ { 2 } e ^ { - t }
C) x=3c1e3t+c2et,y=5c1e3tc2etx = 3 c _ { 1 } e ^ { 3 t } + c _ { 2 } e ^ { t } , y = - 5 c _ { 1 } e ^ { 3 t } - c _ { 2 } e ^ { t }
D) x=5c1e3t+c2et,y=3c1e3tc2etx = 5 c _ { 1 } e ^ { 3 t } + c _ { 2 } e ^ { t } , y = - 3 c _ { 1 } e ^ { 3 t } - c _ { 2 } e ^ { t }
E) x=5c1e3t+c2et,y=3c1e3tc2etx = 5 c _ { 1 } e ^ { - 3 t } + c _ { 2 } e ^ { - t } , y = - 3 c _ { 1 } e ^ { - 3 t } - c _ { 2 } e ^ { - t }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
The values of cc that make the system dxdt=3x+2y,dydt=cx+y\frac { d x } { d t } = 3 x + 2 y , \frac { d y } { d t } = - c x + y stable are

A) c>3/2c > - 3 / 2
B) c<3/2c < - 3 / 2
C) It is stable for all values of cc .
D) It is unstable for all values of cc .
E) c>0c > 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
The geometric configuration of the solutions of dxdt=6x5y,dydt=3x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 3 x + 2 y in the phase plane is

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
The critical points of the system dxdt=2x+y2,dydt=2x3y\frac { d x } { d t } = 2 x + y ^ { 2 } , \frac { d y } { d t } = 2 x - 3 y are

A) y=0,y=3y = 0 , y = - 3
B) x=0,x=9/2x = 0 , x = - 9 / 2
C) (0,0)( 0,0 )
D) (0,0),(9/2,3)( 0,0 ) , ( - 9 / 2 , - 3 )
E) (9/2,3)( - 9 / 2 , - 3 )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
Which of the following systems are autonomous? Select all that apply.

A) dxdt=x+y2,dydt=2x3y\frac { d x } { d t } = x + y ^ { 2 } , \frac { d y } { d t } = 2 x - 3 y
B) dxdt=x+t,dydt=2x3y\frac { d x } { d t } = x + t , \frac { d y } { d t } = 2 x - 3 y
C) dxdt=x+y,dydt=2x3y\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 x - 3 y
D) dxdt=0,dydt=2sinx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \sin x - 3 y
E) dxdt=t+1,dydt=15x4y\frac { d x } { d t } = t + 1 , \frac { d y } { d t } = 15 x - 4 y
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
Which of the following systems are linear? Select all that apply.

A) dxdt=x+y2,dydt=2x3y\frac { d x } { d t } = x + y ^ { 2 } , \frac { d y } { d t } = 2 x - 3 y
B) dxdt=x+t,dydt=2x3y\frac { d x } { d t } = x + t , \frac { d y } { d t } = 2 x - 3 y
C) dxdt=x+y,dydt=2x3y\frac { d x } { d t } = x + y , \frac { d y } { d t } = 2 x - 3 y
D) dxdt=0,dydt=2sinx3y\frac { d x } { d t } = 0 , \frac { d y } { d t } = 2 \sin x - 3 y
E) dxdt=t+1,dydt=15x4y\frac { d x } { d t } = t + 1 , \frac { d y } { d t } = 15 x - 4 y
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
The Jacobian matrix of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x at the critical point (0,2)( 0 , - 2 )

A) A=[0450]A = \left[ \begin{array} { c c } 0 & - 4 \\5 & 0\end{array} \right]
B) A=[0450]A = \left[ \begin{array} { l l } 0 & 4 \\5 & 0\end{array} \right]
C) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & 2 y \\5 & 0\end{array} \right]
D) A=[3x22y50]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\5 & 0\end{array} \right]
E) A=[3x22y05]A = \left[ \begin{array} { r r } 3 x ^ { 2 } & - 2 y \\0 & 5\end{array} \right]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
The critical point (0,2)( 0,2 ) of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x is a

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) center point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
The solution of the system dxdt=4xy,dydt=x+2y\frac { d x } { d t } = 4 x - y , \frac { d y } { d t } = x + 2 y is

A) x=c1e3t+c2(t+1)e3t,y=c1e3t+c2te3tx = c _ { 1 } e ^ { - 3 t } + c _ { 2 } ( t + 1 ) e ^ { - 3 t } , y = c _ { 1 } e ^ { - 3 t } + c _ { 2 } t e ^ { - 3 t }
B) x=c1e3t+c2te3t,y=c1e3t+c2(t+1)e3tx = c _ { 1 } e ^ { - 3 t } + c _ { 2 } t e ^ { - 3 t } , y = c _ { 1 } e ^ { - 3 t } + c _ { 2 } ( t + 1 ) e ^ { - 3 t }
C) x=c1e3t+c2te3t,y=c1e3t+c2(t+1)e3tx = c _ { 1 } e ^ { 3 t } + c _ { 2 } t e ^ { 3 t } , y = c _ { 1 } e ^ { 3 t } + c _ { 2 } ( t + 1 ) e ^ { 3 t }
D) x=c1e3t+c2(t+1)e3t,y=c1e3t+c2te3tx = c _ { 1 } e ^ { 3 t } + c _ { 2 } ( t + 1 ) e ^ { 3 t } , y = c _ { 1 } e ^ { 3 t } + c _ { 2 } t e ^ { 3 t }
E) x=c1e3t+c2(t+1)e3t,y=c1e3tc2te3tx = c _ { 1 } e ^ { 3 t } + c _ { 2 } ( t + 1 ) e ^ { 3 t } , y = - c _ { 1 } e ^ { 3 t } - c _ { 2 } t e ^ { 3 t }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
The critical point (0,2)( 0 , - 2 ) of the system x=x3y2+4,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 2 } + 4 , y ^ { \prime } = 5 x is a

A) stable node
B) unstable node
C) stable spiral point
D) unstable spiral point
E) saddle point
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
The only constant solution of dxdt=5xy4,dydt=x+2y3\frac { d x } { d t } = 5 x - y - 4 , \frac { d y } { d t } = x + 2 y - 3 is

A) x=1,y=1x = 1 , y = 1
B) x=1x = 1
C) x=1x = - 1
D) x=1,y=1x = - 1 , y = - 1
E) y=1y = 1
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
Assume that x(t)x ( t ) and y(t)y ( t ) represent the populations of two competing species at time tt . The Lotka-Volterra competition model is

A) dxdt=r1x(K1+xa12y)/K1,dydt=r2y(K2ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } + x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
B) dxdt=r1x(K1x+a12y)/K1,dydt=r2y(K2ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x + a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
C) dxdt=r1x(K1xa12y)/K1,dydt=r2y(K2ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
D) dxdt=r1x(K1xa12y)/K1,dydt=r2y(K2+ya21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } + y - a _ { 21 } y \right) / K _ { 2 }
E) dxdt=r1x(K1xa12y)/K1,dydt=r2y(K2y+a21y)/K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y + a _ { 21 } y \right) / K _ { 2 }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
The critical points of the system x=x3y38,y=5xx ^ { \prime } = x ^ { 3 } - y ^ { 3 } - 8 , y ^ { \prime } = 5 x are

A) (2,0),(0,2)( 2,0 ) , ( 0,2 )
B) (2,0),(0,2)( - 2,0 ) , ( 0 , - 2 )
C) (0,2)( 0,2 )
D) (0,2)( 0 , - 2 )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.