Deck 8: Systems of Linear First-Order Differential Equations

Full screen (f)
exit full mode
Question
The solution of the system X=(3221)XX ^ { \prime } = \left( \begin{array} { c c } - 3 & - 2 \\2 & 1\end{array} \right) X is

A) X=c1(11)et+c2[(11)tet+(1/20)et]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { - t } + \left( \begin{array} { c } - 1 / 2 \\0\end{array} \right) e ^ { - t } \right]
B) X=c1(11)et+c2[(11)tet+(1/20)et]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { t } + \left( \begin{array} { c } - 1 / 2 \\0\end{array} \right) e ^ { t } \right]
C) X=c1(11)et+c2(11)etX = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t }
D) X=c1(11)et+c2(12)et\mathbf { X } = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { t }
E) none of the above
Use Space or
up arrow
down arrow
to flip the card.
Question
The Wronskian of the vector functions X1=(123)et,X2=(103)e2t\mathbf { X } _ { 1 } = \left( \begin{array} { l } 1 \\2 \\3\end{array} \right) e ^ { t } , \mathbf { X } _ { 2 } = \left( \begin{array} { c } - 1 \\0 \\3\end{array} \right) e ^ { - 2 t } and X3=(221)e4t\mathbf { X } _ { 3 } = \left( \begin{array} { l } 2 \\2 \\1\end{array} \right) e ^ { 4 t } is

A) 14e3t14 e ^ { 3 t }
B) 10e3t10 e ^ { 3 t }
C) 10e3t- 10 e ^ { 3 t }
D) 2e3t2 e ^ { 3 t }
E) 2e3t- 2 e ^ { 3 t }
Question
The solution of the system X=(2211)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) \mathbf { X } is

A) X=c1(11)et+c2(21)e3tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(11)et+c2(21)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { 3 t }
C) X=c1(11)et+c2(12)e3tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { - 3 t }
D) X=c1(11)et+c2(12)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { 3 t }
E) none of the above
Question
The eigenvalues of A=(3511)A = \left( \begin{array} { c c } - 3 & - 5 \\1 & - 1\end{array} \right) is

A) 2±2- 2 \pm \sqrt { 2 }
B) 2±22 \pm \sqrt { 2 }
C) 2±2i- 2 \pm 2 i
D) 2±2i2 \pm 2 i
E) 2±232 \pm 2 \sqrt { 3 }
Question
The characteristic equation of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) λ23λ+4=0\lambda ^ { 2 } - 3 \lambda + 4 = 0
B) λ23λ4=0\lambda ^ { 2 } - 3 \lambda - 4 = 0
C) λ23λ=0\lambda ^ { 2 } - 3 \lambda = 0
D) λ2+3λ=0\lambda ^ { 2 } + 3 \lambda = 0
E) λ2+3λ+4=0\lambda ^ { 2 } + 3 \lambda + 4 = 0
Question
If X1X _ { 1 } and X2X _ { 2 } are solutions of the second order system X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } and Xp\mathrm { X } _ { p } is a particular solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) , then the general solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) is

A) X1+X2+Xp\mathrm { X } _ { 1 } + \mathrm { X } _ { 2 } + \mathrm { X } _ { p }
B) X1+X2+c3Xp\mathbf { X } _ { 1 } + \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { p }
C) c1X1+c2X2c _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 }
D) c1X1+c2X2+c3Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { p }
E) c1X1+c2X2+Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + \mathbf { X } _ { p }
Question
The particular solution of X=(2321)X+(et0)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { c } e ^ { - t } \\0\end{array} \right) is

A) (2tet/5+3et2tet/5+2et)\left( \begin{array} { c } 2 t e ^ { t } / 5 + 3 e ^ { t } \\- 2 t e ^ { t } / 5 + 2 e ^ { t }\end{array} \right)
B) (2tet/5+3et2tet/5+2et)\left( \begin{array} { c } 2 t e ^ { - t } / 5 + 3 e ^ { - t } \\- 2 t e ^ { - t } / 5 + 2 e ^ { - t }\end{array} \right)
C) (2tet/53et2tet/52et)\left( \begin{array} { c } 2 t e ^ { - t } / 5 - 3 e ^ { - t } \\- 2 t e ^ { - t } / 5 - 2 e ^ { - t }\end{array} \right)
D) (2tet/53et2tet/52et)\left( \begin{array} { c } 2 t e ^ { t } / 5 - 3 e ^ { t } \\- 2 t e ^ { t } / 5 - 2 e ^ { t }\end{array} \right)
E) none of the above
Question
The particular solution of X=(2321)X+(t1)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } t \\1\end{array} \right) is

A) (t/4+19/16t/2+7/8)\left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
B) (t/419/16t/2+7/8)\left( \begin{array} { c } t / 4 - 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
C) (t/4+1/8t/27/8)\left( \begin{array} { c } t / 4 + 1 / 8 \\- t / 2 - 7 / 8\end{array} \right)
D) (t/41/8t/27/8)\left( \begin{array} { c } t / 4 - 1 / 8 \\- t / 2 - 7 / 8\end{array} \right)
E) none of the above
Question
The characteristic equation of A=(11214123112)A = \left( \begin{array} { c c c } 1 & - 12 & - 14 \\1 & 2 & - 3 \\1 & 1 & - 2\end{array} \right) is

A) λ3+λ2+25λ25=0- \lambda ^ { 3 } + \lambda ^ { 2 } + 25 \lambda - 25 = 0
B) λ3+λ225λ+25=0- \lambda ^ { 3 } + \lambda ^ { 2 } - 25 \lambda + 25 = 0
C) λ3λ2+25λ25=0- \lambda ^ { 3 } - \lambda ^ { 2 } + 25 \lambda - 25 = 0
D) λ3λ225λ+25=0- \lambda ^ { 3 } - \lambda ^ { 2 } - 25 \lambda + 25 = 0
E) none of the above
Question
The solution of the system X=(2112)XX ^ { \prime } = \left( \begin{array} { c c } 2 & - 1 \\- 1 & 2\end{array} \right) X is

A) X=c1(11)et+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(11)et+c2(11)e3tX = c _ { 1 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 3 t }
C) X=c1(11)et+c2(11)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 3 t }
D) X=c1(11)et+c2(11)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { 3 t }
E) none of the above
Question
The eigenvalues of A=(3221)A = \left( \begin{array} { c c } - 3 & - 2 \\2 & 1\end{array} \right) is

A) 1,11,1
B) 1,1- 1 , - 1
C) 1±51 \pm \sqrt { 5 }
D) 1±21 \pm \sqrt { 2 }
E) 1±2- 1 \pm \sqrt { 2 }
Question
The Wronskian of the vector functions X1=(11)e2tX _ { 1 } = \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 2 t } and X2=(35)e6tX _ { 2 } = \left( \begin{array} { l } 3 \\5\end{array} \right) e ^ { 6 t } is

A) 8e4t8 e ^ { 4 t }
B) 2e4t2 e ^ { 4 t }
C) 8e4t- 8 e ^ { 4 t }
D) 2e4t- 2 e ^ { 4 t }
E) 15e4t15 e ^ { 4 t }
Question
The general solution of X=(2321)X+(t1)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } t \\1\end{array} \right) is

A) c1(11)et+c2(32)e4t+(t/4+19/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - 4 t } + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
B) c1(11)et+c2(32)e4t+(t/4+19/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - 4 t } + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right) .
C) c1(11)et+c2(32)e4t+(t/419/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { 4 t } + \left( \begin{array} { c } t / 4 - 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
D) c1(11)et+c2(32)e4t+(t/4+19/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - 4 t } + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right) ..
E) none of the above
Question
The eigenvalues of A=(11214123112)A = \left( \begin{array} { c c c } 1 & - 12 & - 14 \\1 & 2 & - 3 \\1 & 1 & - 2\end{array} \right) is

A) 1,±5i1 , \pm 5 i
B) 1,±5i- 1 , \pm 5 i
C) 1,4,61,4 , - 6
D) 1,4,61 , - 4,6
E) none of the above
Question
The eigenvalues of A=(2112)A = \left( \begin{array} { c c } 2 & - 1 \\- 1 & 2\end{array} \right) is

A) ±1\pm 1
B) 2±i- 2 \pm i
C) 2±i2 \pm i
D) 1,31,3
E) 1,3- 1 , - 3
Question
The characteristic equation of A=(2112)A = \left( \begin{array} { c c } 2 & - 1 \\- 1 & 2\end{array} \right) is

A) λ21=0\lambda ^ { 2 } - 1 = 0
B) λ2+4λ+5=0\lambda ^ { 2 } + 4 \lambda + 5 = 0
C) λ24λ+5=0\lambda ^ { 2 } - 4 \lambda + 5 = 0
D) λ2+4λ+3=0\lambda ^ { 2 } + 4 \lambda + 3 = 0
E) λ24λ+3=0\lambda ^ { 2 } - 4 \lambda + 3 = 0
Question
The characteristic equation of A=(3511)A = \left( \begin{array} { c c } - 3 & - 5 \\1 & - 1\end{array} \right) is

A) λ2+4λ2=0\lambda ^ { 2 } + 4 \lambda - 2 = 0
B) λ24λ2=0\lambda ^ { 2 } - 4 \lambda - 2 = 0
C) λ24λ8=0\lambda ^ { 2 } - 4 \lambda - 8 = 0
D) λ2+4λ+8=0\lambda ^ { 2 } + 4 \lambda + 8 = 0
E) λ2+4λ+2=0\lambda ^ { 2 } + 4 \lambda + 2 = 0
Question
The eigenvalues of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) 0,30,3
B) 0,30 , - 3
C) (3±7i)/2( 3 \pm \sqrt { 7 } i ) / 2
D) (3±7i)/2( - 3 \pm \sqrt { 7 } i ) / 2
E) 1,4- 1,4
Question
The characteristic equation of A=(3221)A = \left( \begin{array} { c c } - 3 & - 2 \\2 & 1\end{array} \right) is

A) λ22λ4=0\lambda ^ { 2 } - 2 \lambda - 4 = 0
B) λ22λ1=0\lambda ^ { 2 } - 2 \lambda - 1 = 0
C) λ22λ+1=0\lambda ^ { 2 } - 2 \lambda + 1 = 0
D) λ2+2λ1=0\lambda ^ { 2 } + 2 \lambda - 1 = 0
E) λ2+2λ+1=0\lambda ^ { 2 } + 2 \lambda + 1 = 0
Question
The solution of the previous problem that satisfies the initial condition X(0)=(00)X ( 0 ) = \left( \begin{array} { l } 0 \\0\end{array} \right) is

A) (11)et+(32)e4t/16+(t/419/16t/2+7/8)\left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { 4 t } / 16 + \left( \begin{array} { c } t / 4 - 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
B) (11)et/16+(32)e4t+(t/4+19/16t/2+7/8)\left(\begin{array}{c}1 \\-1\end{array}\right) e^{-t} / 16+\left(\begin{array}{l}3 \\2\end{array}\right) e^{4 t}+\left(\begin{array}{c}t / 4+19 / 16 \\-t / 2+7 / 8\end{array}\right)
C) (11)et+(32)e4t/16+(t/4+19/16t/2+7/8)\left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { 4 t } / 16 + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
D) (11)et/16+(32)e4t+(t/419/16t/2+7/8)\left(\begin{array}{c}1 \\-1\end{array}\right) e^{-t} / 16+\left(\begin{array}{l}3 \\2\end{array}\right) e^{4 t}+\left(\begin{array}{c}t / 4-19 / 16 \\-t / 2+7 / 8\end{array}\right)
E) none of the above
Question
The characteristic equation of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) λ2+3λ4=0\lambda ^ { 2 } + 3 \lambda - 4 = 0
B) λ2+3λ+4=0\lambda ^ { 2 } + 3 \lambda + 4 = 0
C) λ23λ=0\lambda ^ { 2 } - 3 \lambda = 0
D) λ2+3λ=0\lambda ^ { 2 } + 3 \lambda = 0
E) λ23λ4=0\lambda ^ { 2 } - 3 \lambda - 4 = 0
Question
The solution of the system X=(1324)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 1 & - 3 \\2 & - 4\end{array} \right) \mathbf { X } is

A) X=c1(32)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 2 t }
B) X=c1(32)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 2 t }
C) X=c1(23)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 2 \\3\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 2 t }
D) X=c1(23)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 2 \\3\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 2 t }
E) none of the above
Question
The solution of the system X=(2211)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) \mathbf { X } is

A) X=c1(11)+c2(21)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(11)+c2(21)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { 3 t }
C) X=c1(11)+c2(12)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { - 3 t }
D) X=c1(11)+c2(12)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { 3 t }
E) none of the above
Question
A particular solution of X=(0110)X+(1et)\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) \mathbf { X } + \left( \begin{array} { c } 1 \\e ^ { t }\end{array} \right) is

A) (et/2et/2+1)\left( \begin{array} { c } e ^ { t } / 2 \\- e ^ { t } / 2 + 1\end{array} \right)
B) (et/2et/21)\left( \begin{array} { c } - e ^ { t } / 2 \\e ^ { t } / 2 - 1\end{array} \right)
C) (et/2et/21)\left( \begin{array} { c } e ^ { t } / 2 \\- e ^ { t } / 2 - 1\end{array} \right)
D) (et/2et/2+1)\left( \begin{array} { c } e ^ { t } / 2 \\e ^ { t } / 2 + 1\end{array} \right)
E) (et/2et/21)\left( \begin{array} { c } e ^ { t } / 2 \\e ^ { t } / 2 - 1\end{array} \right)
Question
The solution of the system X=(2222)X\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) \mathbf { X } is

A) X=c1e2t[(01)cos(2t)(01)sin(2t)]+c2e2t[(10)cos(2t)+(01)sin(2t)]\mathbf { X } = c _ { 1 } e ^ { 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos ( 2 t ) - \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( 2 t ) \right] + c _ { 2 } e ^ { 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos ( 2 t ) + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( 2 t ) \right]
B) X=c1e2t[(01)cos(2t)(10)sin(2t)]+c2e2t[(10)cos(2t)+(01)sin(2t)]\mathbf { X } = c _ { 1 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos ( 2 t ) - \left( \begin{array} { l } 1 \\0\end{array} \right) \sin ( 2 t ) \right] + c _ { 2 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos ( 2 t ) + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( 2 t ) \right]
C) X=c1e2t[(01)cost+(10)sint]+c2e2t[(10)cost+(01)sint]\mathrm { X } = c _ { 1 } e ^ { 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos t + \left( \begin{array} { l } 1 \\0\end{array} \right) \sin t \right] + c _ { 2 } e ^ { 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos t + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin t \right]
D) X=c1e2t[(01)cost(10)sint]+c2e2t[(10)cost+(01)sint]\mathrm { X } = c _ { 1 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos t - \left( \begin{array} { l } 1 \\0\end{array} \right) \sin t \right] + c _ { 2 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos t + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin t \right]
E) none of the above
Question
Let A be the matrix of the previous two problems. The solution of X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } is

A) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
B) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { - 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { - 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { - 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { - 2 t } \right]
C) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { - 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { - 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { - 2 t } \right]
D) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { - 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { 2 t } \right]
E) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { 2 t } \right]
Question
The characteristic equation for the matrix A=(300011013)A = \left( \begin{array} { c c c } 3 & 0 & 0 \\0 & 1 & - 1 \\0 & 1 & 3\end{array} \right) is

A) λ37λ216λ+12=0- \lambda ^ { 3 } - 7 \lambda ^ { 2 } - 16 \lambda + 12 = 0
B) λ3+7λ2+14λ+6=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } + 14 \lambda + 6 = 0
C) λ3+7λ214λ+6=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } - 14 \lambda + 6 = 0
D) λ3+7λ2+16λ+12=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } + 16 \lambda + 12 = 0
E) λ3+7λ216λ+12=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } - 16 \lambda + 12 = 0
Question
If X1,X2,\mathrm { X } _ { 1 } , \mathrm { X } _ { 2 }, and X3X _ { 3 } are solutions of the third order system X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } and Xp\mathrm { X } _ { p } is a particular solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) , then the general solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) is

A) c1X1+c2X2+c3X3c _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { 3 }
B) c1X1+c2X2+c3X3+c4Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { 3 } + c _ { 4 } \mathbf { X } _ { p }
C) c1X1+c2X2+c3X3+Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { 3 } + \mathbf { X } _ { p }
D) X1+X2+X3+Xp\mathrm { X } _ { 1 } + \mathrm { X } _ { 2 } + \mathrm { X } _ { 3 } + \mathrm { X } _ { p }
E) X1+X2+X3+c4Xp\mathrm { X } _ { 1 } + \mathrm { X } _ { 2 } + \mathrm { X } _ { 3 } + c _ { 4 } \mathrm { X } _ { p }
Question
A particular solution of X=(0110)X+(1t)\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) \mathbf { X } + \left( \begin{array} { l } 1 \\t\end{array} \right) is

A) (t20)\left( \begin{array} { l } t ^ { 2 } \\0\end{array} \right)
B) (0t)\left( \begin{array} { l } 0 \\t\end{array} \right)
C) (1t)\left( \begin{array} { l } 1 \\t\end{array} \right)
D) (t0)\left( \begin{array} { l } t \\0\end{array} \right)
E) (t1)\left( \begin{array} { l } t \\1\end{array} \right)
Question
The characteristic equation of A=(3111)A = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) is

A) λ2+4λ4=0\lambda ^ { 2 } + 4 \lambda - 4 = 0
B) λ2+4λ+4=0\lambda ^ { 2 } + 4 \lambda + 4 = 0
C) λ22λ=0\lambda ^ { 2 } - 2 \lambda = 0
D) λ2+2λ=0\lambda ^ { 2 } + 2 \lambda = 0
E) λ22λ4=0\lambda ^ { 2 } - 2 \lambda - 4 = 0
Question
The characteristic equation of A=(1324)A = \left( \begin{array} { l l } 1 & - 3 \\2 & - 4\end{array} \right) is

A) λ2+3λ2=0\lambda ^ { 2 } + 3 \lambda - 2 = 0
B) λ2+5λ+2=0\lambda ^ { 2 } + 5 \lambda + 2 = 0
C) λ25λ+2=0\lambda ^ { 2 } - 5 \lambda + 2 = 0
D) λ2+3λ+2=0\lambda ^ { 2 } + 3 \lambda + 2 = 0
E) λ23λ+2=0\lambda ^ { 2 } - 3 \lambda + 2 = 0
Question
The eigenvalues of the matrix A of the previous problem are

A) 2,2,3- 2 , - 2,3
B) 2,2,32,2,3
C) 1±i,31 \pm i , 3
D) 1±i,3- 1 \pm i , 3
E) 1±3i,31 \pm \sqrt { 3 } i , 3
Question
The eigenvalues of A=(2222)A = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) is

A) 0,40,4
B) 0,40 , - 4
C) 2,22,2
D) 2±2i2 \pm 2 i
E) 2±2i- 2 \pm 2 i
Question
The eigenvalues of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) 1±3i1 \pm \sqrt { 3 } i
B) 1±3i- 1 \pm \sqrt { 3 } i
C) 0,30,3
D) 0,10,1
E) 0,10 , - 1
Question
The Wronskian of the vector functions X1=(11)e2tX _ { 1 } = \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 2 t } and X2=(35)e6tX _ { 2 } = \left( \begin{array} { l } 3 \\5\end{array} \right) e ^ { 6 t } is

A) 8e4t8 e ^ { 4 t }
B) 2e4t2 e ^ { 4 t }
C) 8e4t- 8 e ^ { 4 t }
D) 2e4t- 2 e ^ { 4 t }
E) 15e4t15 e ^ { 4 t }
Question
Let A=(0110)A = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) . Then eAt=e ^ { A t } =

A) Icost+AsintI \cos t + A \sin t
B) IcostAsintI \cos t - A \sin t
C) let+Aetl e ^ { t } + A e ^ { - t }
D) let+Aetl e ^ { - t } + A e ^ { - t }
E) Icosht+AsinhtI \cosh t + A \sinh t
Question
The Wronskian of the vector functions X1=(210)et,X2=(135)e2t\mathbf { X } _ { 1 } = \left( \begin{array} { l } 2 \\1 \\0\end{array} \right) e ^ { t } , \mathbf { X } _ { 2 } = \left( \begin{array} { l } 1 \\3 \\5\end{array} \right) e ^ { 2 t } and X3=(150)e3tX _ { 3 } = \left( \begin{array} { c } - 1 \\5 \\0\end{array} \right) e ^ { 3 t } is

A) 55e6t55 e ^ { 6 t }
B) 55e6t- 55 e ^ { 6 t }
C) 45e6t45 e ^ { 6 t }
D) 45e6t- 45 e ^ { - 6 t }
E) 45e6t45 e ^ { - 6 t }
Question
Let A=(012004000)A = \left( \begin{array} { l l l } 0 & 1 & 2 \\0 & 0 & 4 \\0 & 0 & 0\end{array} \right) . Then eAt=e ^ { A t } =

A) (1t2t014t001)\left( \begin{array} { l l l } 1 & t & 2 t \\0 & 1 & 4 t \\0 & 0 & 1\end{array} \right)
B) (1t2t+2t2014t001)\left( \begin{array} { c c c } 1 & - t & 2 t + 2 t ^ { 2 } \\0 & 1 & - 4 t \\0 & 0 & 1\end{array} \right)
C) (1t2t+2t2014t001)\left( \begin{array} { c c c } 1 & t & 2 t + 2 t ^ { 2 } \\0 & 1 & 4 t \\0 & 0 & 1\end{array} \right)
D) (1t2t+4t2014t001)\left( \begin{array} { c c c } 1 & t & 2 t + 4 t ^ { 2 } \\0 & 1 & 4 t \\0 & 0 & 1\end{array} \right)
E) none of the above
Question
The characteristic equation of A=(2222)A = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) is

A) λ24λ=0\lambda ^ { 2 } - 4 \lambda = 0
B) λ2+4λ=0\lambda ^ { 2 } + 4 \lambda = 0
C) λ2+4λ8=0\lambda ^ { 2 } + 4 \lambda - 8 = 0
D) λ24λ+8=0\lambda ^ { 2 } - 4 \lambda + 8 = 0
E) λ24λ8=0\lambda ^ { 2 } - 4 \lambda - 8 = 0
Question
The solution of the system X=(3111)XX ^ { \prime } = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) X is

A) X=c1(11)e2t+c2[(11)te2t+(10)e2t]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left[ \left( \begin{array} { c } - 1 \\1\end{array} \right) t e ^ { - 2 t } + \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { - 2 t } \right]
B) X=c1(11)e2t+c2(11)te2t+c3(10)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) t e ^ { - 2 t } + c _ { 3 } \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { - 2 t }
C) X=c1(11)e2t+c2(11)te2tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { - 2 t }
D) X=c1(11)e2t+c2(12)etX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { - t }
E) none of the above
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Systems of Linear First-Order Differential Equations
1
The solution of the system X=(3221)XX ^ { \prime } = \left( \begin{array} { c c } - 3 & - 2 \\2 & 1\end{array} \right) X is

A) X=c1(11)et+c2[(11)tet+(1/20)et]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { - t } + \left( \begin{array} { c } - 1 / 2 \\0\end{array} \right) e ^ { - t } \right]
B) X=c1(11)et+c2[(11)tet+(1/20)et]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { t } + \left( \begin{array} { c } - 1 / 2 \\0\end{array} \right) e ^ { t } \right]
C) X=c1(11)et+c2(11)etX = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t }
D) X=c1(11)et+c2(12)et\mathbf { X } = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { t }
E) none of the above
X=c1(11)et+c2[(11)tet+(1/20)et]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left[ \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { - t } + \left( \begin{array} { c } - 1 / 2 \\0\end{array} \right) e ^ { - t } \right]
2
The Wronskian of the vector functions X1=(123)et,X2=(103)e2t\mathbf { X } _ { 1 } = \left( \begin{array} { l } 1 \\2 \\3\end{array} \right) e ^ { t } , \mathbf { X } _ { 2 } = \left( \begin{array} { c } - 1 \\0 \\3\end{array} \right) e ^ { - 2 t } and X3=(221)e4t\mathbf { X } _ { 3 } = \left( \begin{array} { l } 2 \\2 \\1\end{array} \right) e ^ { 4 t } is

A) 14e3t14 e ^ { 3 t }
B) 10e3t10 e ^ { 3 t }
C) 10e3t- 10 e ^ { 3 t }
D) 2e3t2 e ^ { 3 t }
E) 2e3t- 2 e ^ { 3 t }
2e3t2 e ^ { 3 t }
3
The solution of the system X=(2211)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) \mathbf { X } is

A) X=c1(11)et+c2(21)e3tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(11)et+c2(21)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { 3 t }
C) X=c1(11)et+c2(12)e3tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { - 3 t }
D) X=c1(11)et+c2(12)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { 3 t }
E) none of the above
none of the above
4
The eigenvalues of A=(3511)A = \left( \begin{array} { c c } - 3 & - 5 \\1 & - 1\end{array} \right) is

A) 2±2- 2 \pm \sqrt { 2 }
B) 2±22 \pm \sqrt { 2 }
C) 2±2i- 2 \pm 2 i
D) 2±2i2 \pm 2 i
E) 2±232 \pm 2 \sqrt { 3 }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
The characteristic equation of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) λ23λ+4=0\lambda ^ { 2 } - 3 \lambda + 4 = 0
B) λ23λ4=0\lambda ^ { 2 } - 3 \lambda - 4 = 0
C) λ23λ=0\lambda ^ { 2 } - 3 \lambda = 0
D) λ2+3λ=0\lambda ^ { 2 } + 3 \lambda = 0
E) λ2+3λ+4=0\lambda ^ { 2 } + 3 \lambda + 4 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
If X1X _ { 1 } and X2X _ { 2 } are solutions of the second order system X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } and Xp\mathrm { X } _ { p } is a particular solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) , then the general solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) is

A) X1+X2+Xp\mathrm { X } _ { 1 } + \mathrm { X } _ { 2 } + \mathrm { X } _ { p }
B) X1+X2+c3Xp\mathbf { X } _ { 1 } + \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { p }
C) c1X1+c2X2c _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 }
D) c1X1+c2X2+c3Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { p }
E) c1X1+c2X2+Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + \mathbf { X } _ { p }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
The particular solution of X=(2321)X+(et0)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { c } e ^ { - t } \\0\end{array} \right) is

A) (2tet/5+3et2tet/5+2et)\left( \begin{array} { c } 2 t e ^ { t } / 5 + 3 e ^ { t } \\- 2 t e ^ { t } / 5 + 2 e ^ { t }\end{array} \right)
B) (2tet/5+3et2tet/5+2et)\left( \begin{array} { c } 2 t e ^ { - t } / 5 + 3 e ^ { - t } \\- 2 t e ^ { - t } / 5 + 2 e ^ { - t }\end{array} \right)
C) (2tet/53et2tet/52et)\left( \begin{array} { c } 2 t e ^ { - t } / 5 - 3 e ^ { - t } \\- 2 t e ^ { - t } / 5 - 2 e ^ { - t }\end{array} \right)
D) (2tet/53et2tet/52et)\left( \begin{array} { c } 2 t e ^ { t } / 5 - 3 e ^ { t } \\- 2 t e ^ { t } / 5 - 2 e ^ { t }\end{array} \right)
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
The particular solution of X=(2321)X+(t1)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } t \\1\end{array} \right) is

A) (t/4+19/16t/2+7/8)\left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
B) (t/419/16t/2+7/8)\left( \begin{array} { c } t / 4 - 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
C) (t/4+1/8t/27/8)\left( \begin{array} { c } t / 4 + 1 / 8 \\- t / 2 - 7 / 8\end{array} \right)
D) (t/41/8t/27/8)\left( \begin{array} { c } t / 4 - 1 / 8 \\- t / 2 - 7 / 8\end{array} \right)
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
The characteristic equation of A=(11214123112)A = \left( \begin{array} { c c c } 1 & - 12 & - 14 \\1 & 2 & - 3 \\1 & 1 & - 2\end{array} \right) is

A) λ3+λ2+25λ25=0- \lambda ^ { 3 } + \lambda ^ { 2 } + 25 \lambda - 25 = 0
B) λ3+λ225λ+25=0- \lambda ^ { 3 } + \lambda ^ { 2 } - 25 \lambda + 25 = 0
C) λ3λ2+25λ25=0- \lambda ^ { 3 } - \lambda ^ { 2 } + 25 \lambda - 25 = 0
D) λ3λ225λ+25=0- \lambda ^ { 3 } - \lambda ^ { 2 } - 25 \lambda + 25 = 0
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
The solution of the system X=(2112)XX ^ { \prime } = \left( \begin{array} { c c } 2 & - 1 \\- 1 & 2\end{array} \right) X is

A) X=c1(11)et+c2(11)e3tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(11)et+c2(11)e3tX = c _ { 1 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 3 t }
C) X=c1(11)et+c2(11)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 3 t }
D) X=c1(11)et+c2(11)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { 3 t }
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
The eigenvalues of A=(3221)A = \left( \begin{array} { c c } - 3 & - 2 \\2 & 1\end{array} \right) is

A) 1,11,1
B) 1,1- 1 , - 1
C) 1±51 \pm \sqrt { 5 }
D) 1±21 \pm \sqrt { 2 }
E) 1±2- 1 \pm \sqrt { 2 }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
The Wronskian of the vector functions X1=(11)e2tX _ { 1 } = \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 2 t } and X2=(35)e6tX _ { 2 } = \left( \begin{array} { l } 3 \\5\end{array} \right) e ^ { 6 t } is

A) 8e4t8 e ^ { 4 t }
B) 2e4t2 e ^ { 4 t }
C) 8e4t- 8 e ^ { 4 t }
D) 2e4t- 2 e ^ { 4 t }
E) 15e4t15 e ^ { 4 t }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
The general solution of X=(2321)X+(t1)\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 3 \\2 & 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } t \\1\end{array} \right) is

A) c1(11)et+c2(32)e4t+(t/4+19/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - 4 t } + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
B) c1(11)et+c2(32)e4t+(t/4+19/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - 4 t } + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right) .
C) c1(11)et+c2(32)e4t+(t/419/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { 4 t } + \left( \begin{array} { c } t / 4 - 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
D) c1(11)et+c2(32)e4t+(t/4+19/16t/2+7/8)c _ { 1 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - 4 t } + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right) ..
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
The eigenvalues of A=(11214123112)A = \left( \begin{array} { c c c } 1 & - 12 & - 14 \\1 & 2 & - 3 \\1 & 1 & - 2\end{array} \right) is

A) 1,±5i1 , \pm 5 i
B) 1,±5i- 1 , \pm 5 i
C) 1,4,61,4 , - 6
D) 1,4,61 , - 4,6
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
The eigenvalues of A=(2112)A = \left( \begin{array} { c c } 2 & - 1 \\- 1 & 2\end{array} \right) is

A) ±1\pm 1
B) 2±i- 2 \pm i
C) 2±i2 \pm i
D) 1,31,3
E) 1,3- 1 , - 3
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
The characteristic equation of A=(2112)A = \left( \begin{array} { c c } 2 & - 1 \\- 1 & 2\end{array} \right) is

A) λ21=0\lambda ^ { 2 } - 1 = 0
B) λ2+4λ+5=0\lambda ^ { 2 } + 4 \lambda + 5 = 0
C) λ24λ+5=0\lambda ^ { 2 } - 4 \lambda + 5 = 0
D) λ2+4λ+3=0\lambda ^ { 2 } + 4 \lambda + 3 = 0
E) λ24λ+3=0\lambda ^ { 2 } - 4 \lambda + 3 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
The characteristic equation of A=(3511)A = \left( \begin{array} { c c } - 3 & - 5 \\1 & - 1\end{array} \right) is

A) λ2+4λ2=0\lambda ^ { 2 } + 4 \lambda - 2 = 0
B) λ24λ2=0\lambda ^ { 2 } - 4 \lambda - 2 = 0
C) λ24λ8=0\lambda ^ { 2 } - 4 \lambda - 8 = 0
D) λ2+4λ+8=0\lambda ^ { 2 } + 4 \lambda + 8 = 0
E) λ2+4λ+2=0\lambda ^ { 2 } + 4 \lambda + 2 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
The eigenvalues of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) 0,30,3
B) 0,30 , - 3
C) (3±7i)/2( 3 \pm \sqrt { 7 } i ) / 2
D) (3±7i)/2( - 3 \pm \sqrt { 7 } i ) / 2
E) 1,4- 1,4
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
The characteristic equation of A=(3221)A = \left( \begin{array} { c c } - 3 & - 2 \\2 & 1\end{array} \right) is

A) λ22λ4=0\lambda ^ { 2 } - 2 \lambda - 4 = 0
B) λ22λ1=0\lambda ^ { 2 } - 2 \lambda - 1 = 0
C) λ22λ+1=0\lambda ^ { 2 } - 2 \lambda + 1 = 0
D) λ2+2λ1=0\lambda ^ { 2 } + 2 \lambda - 1 = 0
E) λ2+2λ+1=0\lambda ^ { 2 } + 2 \lambda + 1 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
The solution of the previous problem that satisfies the initial condition X(0)=(00)X ( 0 ) = \left( \begin{array} { l } 0 \\0\end{array} \right) is

A) (11)et+(32)e4t/16+(t/419/16t/2+7/8)\left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { 4 t } / 16 + \left( \begin{array} { c } t / 4 - 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
B) (11)et/16+(32)e4t+(t/4+19/16t/2+7/8)\left(\begin{array}{c}1 \\-1\end{array}\right) e^{-t} / 16+\left(\begin{array}{l}3 \\2\end{array}\right) e^{4 t}+\left(\begin{array}{c}t / 4+19 / 16 \\-t / 2+7 / 8\end{array}\right)
C) (11)et+(32)e4t/16+(t/4+19/16t/2+7/8)\left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - t } + \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { 4 t } / 16 + \left( \begin{array} { c } t / 4 + 19 / 16 \\- t / 2 + 7 / 8\end{array} \right)
D) (11)et/16+(32)e4t+(t/419/16t/2+7/8)\left(\begin{array}{c}1 \\-1\end{array}\right) e^{-t} / 16+\left(\begin{array}{l}3 \\2\end{array}\right) e^{4 t}+\left(\begin{array}{c}t / 4-19 / 16 \\-t / 2+7 / 8\end{array}\right)
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
The characteristic equation of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) λ2+3λ4=0\lambda ^ { 2 } + 3 \lambda - 4 = 0
B) λ2+3λ+4=0\lambda ^ { 2 } + 3 \lambda + 4 = 0
C) λ23λ=0\lambda ^ { 2 } - 3 \lambda = 0
D) λ2+3λ=0\lambda ^ { 2 } + 3 \lambda = 0
E) λ23λ4=0\lambda ^ { 2 } - 3 \lambda - 4 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
The solution of the system X=(1324)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 1 & - 3 \\2 & - 4\end{array} \right) \mathbf { X } is

A) X=c1(32)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 2 t }
B) X=c1(32)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 3 \\2\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 2 t }
C) X=c1(23)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 2 \\3\end{array} \right) e ^ { - t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { - 2 t }
D) X=c1(23)et+c2(11)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { l } 2 \\3\end{array} \right) e ^ { t } + c _ { 2 } \left( \begin{array} { l } 1 \\1\end{array} \right) e ^ { 2 t }
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
The solution of the system X=(2211)X\mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) \mathbf { X } is

A) X=c1(11)+c2(21)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { - 3 t }
B) X=c1(11)+c2(21)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 2 \\1\end{array} \right) e ^ { 3 t }
C) X=c1(11)+c2(12)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { - 3 t }
D) X=c1(11)+c2(12)e3t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { 3 t }
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
A particular solution of X=(0110)X+(1et)\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) \mathbf { X } + \left( \begin{array} { c } 1 \\e ^ { t }\end{array} \right) is

A) (et/2et/2+1)\left( \begin{array} { c } e ^ { t } / 2 \\- e ^ { t } / 2 + 1\end{array} \right)
B) (et/2et/21)\left( \begin{array} { c } - e ^ { t } / 2 \\e ^ { t } / 2 - 1\end{array} \right)
C) (et/2et/21)\left( \begin{array} { c } e ^ { t } / 2 \\- e ^ { t } / 2 - 1\end{array} \right)
D) (et/2et/2+1)\left( \begin{array} { c } e ^ { t } / 2 \\e ^ { t } / 2 + 1\end{array} \right)
E) (et/2et/21)\left( \begin{array} { c } e ^ { t } / 2 \\e ^ { t } / 2 - 1\end{array} \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
The solution of the system X=(2222)X\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) \mathbf { X } is

A) X=c1e2t[(01)cos(2t)(01)sin(2t)]+c2e2t[(10)cos(2t)+(01)sin(2t)]\mathbf { X } = c _ { 1 } e ^ { 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos ( 2 t ) - \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( 2 t ) \right] + c _ { 2 } e ^ { 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos ( 2 t ) + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( 2 t ) \right]
B) X=c1e2t[(01)cos(2t)(10)sin(2t)]+c2e2t[(10)cos(2t)+(01)sin(2t)]\mathbf { X } = c _ { 1 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos ( 2 t ) - \left( \begin{array} { l } 1 \\0\end{array} \right) \sin ( 2 t ) \right] + c _ { 2 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos ( 2 t ) + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin ( 2 t ) \right]
C) X=c1e2t[(01)cost+(10)sint]+c2e2t[(10)cost+(01)sint]\mathrm { X } = c _ { 1 } e ^ { 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos t + \left( \begin{array} { l } 1 \\0\end{array} \right) \sin t \right] + c _ { 2 } e ^ { 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos t + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin t \right]
D) X=c1e2t[(01)cost(10)sint]+c2e2t[(10)cost+(01)sint]\mathrm { X } = c _ { 1 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 0 \\1\end{array} \right) \cos t - \left( \begin{array} { l } 1 \\0\end{array} \right) \sin t \right] + c _ { 2 } e ^ { - 2 t } \left[ \left( \begin{array} { l } 1 \\0\end{array} \right) \cos t + \left( \begin{array} { l } 0 \\1\end{array} \right) \sin t \right]
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
Let A be the matrix of the previous two problems. The solution of X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } is

A) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { l } 0 \\1 \\0\end{array} \right) e ^ { 2 t } \right]
B) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { - 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { - 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { - 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { - 2 t } \right]
C) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { - 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { - 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { - 2 t } \right]
D) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { - 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { 2 t } \right]
E) c1(100)e3t+c2(011)e2t+c3[(011)te2t+(010)e2t]c _ { 1 } \left( \begin{array} { l } 1 \\0 \\0\end{array} \right) e ^ { 3 t } + c _ { 2 } \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) e ^ { 2 t } + c _ { 3 } \left[ \left( \begin{array} { c } 0 \\1 \\- 1\end{array} \right) t e ^ { 2 t } + \left( \begin{array} { c } 0 \\- 1 \\0\end{array} \right) e ^ { 2 t } \right]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
The characteristic equation for the matrix A=(300011013)A = \left( \begin{array} { c c c } 3 & 0 & 0 \\0 & 1 & - 1 \\0 & 1 & 3\end{array} \right) is

A) λ37λ216λ+12=0- \lambda ^ { 3 } - 7 \lambda ^ { 2 } - 16 \lambda + 12 = 0
B) λ3+7λ2+14λ+6=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } + 14 \lambda + 6 = 0
C) λ3+7λ214λ+6=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } - 14 \lambda + 6 = 0
D) λ3+7λ2+16λ+12=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } + 16 \lambda + 12 = 0
E) λ3+7λ216λ+12=0- \lambda ^ { 3 } + 7 \lambda ^ { 2 } - 16 \lambda + 12 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
If X1,X2,\mathrm { X } _ { 1 } , \mathrm { X } _ { 2 }, and X3X _ { 3 } are solutions of the third order system X=AX\mathbf { X } ^ { \prime } = A \mathbf { X } and Xp\mathrm { X } _ { p } is a particular solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) , then the general solution of X=AX+f(t)\mathrm { X } ^ { \prime } = A \mathrm { X } + f ( t ) is

A) c1X1+c2X2+c3X3c _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { 3 }
B) c1X1+c2X2+c3X3+c4Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { 3 } + c _ { 4 } \mathbf { X } _ { p }
C) c1X1+c2X2+c3X3+Xpc _ { 1 } \mathbf { X } _ { 1 } + c _ { 2 } \mathbf { X } _ { 2 } + c _ { 3 } \mathbf { X } _ { 3 } + \mathbf { X } _ { p }
D) X1+X2+X3+Xp\mathrm { X } _ { 1 } + \mathrm { X } _ { 2 } + \mathrm { X } _ { 3 } + \mathrm { X } _ { p }
E) X1+X2+X3+c4Xp\mathrm { X } _ { 1 } + \mathrm { X } _ { 2 } + \mathrm { X } _ { 3 } + c _ { 4 } \mathrm { X } _ { p }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
A particular solution of X=(0110)X+(1t)\mathbf { X } ^ { \prime } = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) \mathbf { X } + \left( \begin{array} { l } 1 \\t\end{array} \right) is

A) (t20)\left( \begin{array} { l } t ^ { 2 } \\0\end{array} \right)
B) (0t)\left( \begin{array} { l } 0 \\t\end{array} \right)
C) (1t)\left( \begin{array} { l } 1 \\t\end{array} \right)
D) (t0)\left( \begin{array} { l } t \\0\end{array} \right)
E) (t1)\left( \begin{array} { l } t \\1\end{array} \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
The characteristic equation of A=(3111)A = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) is

A) λ2+4λ4=0\lambda ^ { 2 } + 4 \lambda - 4 = 0
B) λ2+4λ+4=0\lambda ^ { 2 } + 4 \lambda + 4 = 0
C) λ22λ=0\lambda ^ { 2 } - 2 \lambda = 0
D) λ2+2λ=0\lambda ^ { 2 } + 2 \lambda = 0
E) λ22λ4=0\lambda ^ { 2 } - 2 \lambda - 4 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
The characteristic equation of A=(1324)A = \left( \begin{array} { l l } 1 & - 3 \\2 & - 4\end{array} \right) is

A) λ2+3λ2=0\lambda ^ { 2 } + 3 \lambda - 2 = 0
B) λ2+5λ+2=0\lambda ^ { 2 } + 5 \lambda + 2 = 0
C) λ25λ+2=0\lambda ^ { 2 } - 5 \lambda + 2 = 0
D) λ2+3λ+2=0\lambda ^ { 2 } + 3 \lambda + 2 = 0
E) λ23λ+2=0\lambda ^ { 2 } - 3 \lambda + 2 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
The eigenvalues of the matrix A of the previous problem are

A) 2,2,3- 2 , - 2,3
B) 2,2,32,2,3
C) 1±i,31 \pm i , 3
D) 1±i,3- 1 \pm i , 3
E) 1±3i,31 \pm \sqrt { 3 } i , 3
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
The eigenvalues of A=(2222)A = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) is

A) 0,40,4
B) 0,40 , - 4
C) 2,22,2
D) 2±2i2 \pm 2 i
E) 2±2i- 2 \pm 2 i
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
The eigenvalues of A=(2211)A = \left( \begin{array} { l l } 2 & 2 \\1 & 1\end{array} \right) is

A) 1±3i1 \pm \sqrt { 3 } i
B) 1±3i- 1 \pm \sqrt { 3 } i
C) 0,30,3
D) 0,10,1
E) 0,10 , - 1
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
The Wronskian of the vector functions X1=(11)e2tX _ { 1 } = \left( \begin{array} { c } 1 \\- 1\end{array} \right) e ^ { - 2 t } and X2=(35)e6tX _ { 2 } = \left( \begin{array} { l } 3 \\5\end{array} \right) e ^ { 6 t } is

A) 8e4t8 e ^ { 4 t }
B) 2e4t2 e ^ { 4 t }
C) 8e4t- 8 e ^ { 4 t }
D) 2e4t- 2 e ^ { 4 t }
E) 15e4t15 e ^ { 4 t }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
Let A=(0110)A = \left( \begin{array} { c c } 0 & 1 \\- 1 & 0\end{array} \right) . Then eAt=e ^ { A t } =

A) Icost+AsintI \cos t + A \sin t
B) IcostAsintI \cos t - A \sin t
C) let+Aetl e ^ { t } + A e ^ { - t }
D) let+Aetl e ^ { - t } + A e ^ { - t }
E) Icosht+AsinhtI \cosh t + A \sinh t
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
The Wronskian of the vector functions X1=(210)et,X2=(135)e2t\mathbf { X } _ { 1 } = \left( \begin{array} { l } 2 \\1 \\0\end{array} \right) e ^ { t } , \mathbf { X } _ { 2 } = \left( \begin{array} { l } 1 \\3 \\5\end{array} \right) e ^ { 2 t } and X3=(150)e3tX _ { 3 } = \left( \begin{array} { c } - 1 \\5 \\0\end{array} \right) e ^ { 3 t } is

A) 55e6t55 e ^ { 6 t }
B) 55e6t- 55 e ^ { 6 t }
C) 45e6t45 e ^ { 6 t }
D) 45e6t- 45 e ^ { - 6 t }
E) 45e6t45 e ^ { - 6 t }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
Let A=(012004000)A = \left( \begin{array} { l l l } 0 & 1 & 2 \\0 & 0 & 4 \\0 & 0 & 0\end{array} \right) . Then eAt=e ^ { A t } =

A) (1t2t014t001)\left( \begin{array} { l l l } 1 & t & 2 t \\0 & 1 & 4 t \\0 & 0 & 1\end{array} \right)
B) (1t2t+2t2014t001)\left( \begin{array} { c c c } 1 & - t & 2 t + 2 t ^ { 2 } \\0 & 1 & - 4 t \\0 & 0 & 1\end{array} \right)
C) (1t2t+2t2014t001)\left( \begin{array} { c c c } 1 & t & 2 t + 2 t ^ { 2 } \\0 & 1 & 4 t \\0 & 0 & 1\end{array} \right)
D) (1t2t+4t2014t001)\left( \begin{array} { c c c } 1 & t & 2 t + 4 t ^ { 2 } \\0 & 1 & 4 t \\0 & 0 & 1\end{array} \right)
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
The characteristic equation of A=(2222)A = \left( \begin{array} { c c } 2 & - 2 \\2 & 2\end{array} \right) is

A) λ24λ=0\lambda ^ { 2 } - 4 \lambda = 0
B) λ2+4λ=0\lambda ^ { 2 } + 4 \lambda = 0
C) λ2+4λ8=0\lambda ^ { 2 } + 4 \lambda - 8 = 0
D) λ24λ+8=0\lambda ^ { 2 } - 4 \lambda + 8 = 0
E) λ24λ8=0\lambda ^ { 2 } - 4 \lambda - 8 = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
The solution of the system X=(3111)XX ^ { \prime } = \left( \begin{array} { c c } - 3 & - 1 \\1 & - 1\end{array} \right) X is

A) X=c1(11)e2t+c2[(11)te2t+(10)e2t]\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left[ \left( \begin{array} { c } - 1 \\1\end{array} \right) t e ^ { - 2 t } + \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { - 2 t } \right]
B) X=c1(11)e2t+c2(11)te2t+c3(10)e2t\mathbf { X } = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } - 1 \\1\end{array} \right) t e ^ { - 2 t } + c _ { 3 } \left( \begin{array} { l } 1 \\0\end{array} \right) e ^ { - 2 t }
C) X=c1(11)e2t+c2(11)te2tX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { c } 1 \\- 1\end{array} \right) t e ^ { - 2 t }
D) X=c1(11)e2t+c2(12)etX = c _ { 1 } \left( \begin{array} { c } - 1 \\1\end{array} \right) e ^ { - 2 t } + c _ { 2 } \left( \begin{array} { l } 1 \\2\end{array} \right) e ^ { - t }
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.