Deck 7: An Introduction to Portfolio Management

Full screen (f)
exit full mode
Question
Exhibit 7B.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 1)2 - r1.2 E( σ\sigma 1) E( σ\sigma 2)] - [E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2 E( σ\sigma 1) E( σ\sigma 2)]

-Refer to Exhibit 7B.1. Show the minimum portfolio variance for a portfolio of two risky assets when r1.2 = -1.

A)E( σ\sigma 1) /[E( σ\sigma 1) + E( σ\sigma 2)]
B)E( σ\sigma 1) / [E( σ\sigma 1) - E( σ\sigma 2)]
C)E( σ\sigma 2) -[E( σ\sigma 1) + E( σ\sigma 2)]
D)E( σ\sigma 2) /[E( σ\sigma 1)- E( σ\sigma 2)]
E)None of the above
Use Space or
up arrow
down arrow
to flip the card.
Question
The expected return and standard deviation of a portfolio of risky assets is equal to the weighted average of the individual asset's expected returns and standard deviation.
Question
Exhibit 7A.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 2)2 - r1.2 E( σ\sigma 1)E( σ\sigma 2)] -[E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2E( σ\sigma 1)E( σ\sigma 2)]

-Refer to Exhibit 7A.1. What weight of security 1 gives the minimum portfolio variance when r1.2 = .60, E( σ\sigma 1) = .10 and E( σ\sigma 2) = .16?

A).0244
B).3679
C).5697
D).6309
E).9756
Question
Combining assets that are not perfectly correlated does affect both the expected return of the portfolio as well as the risk of the portfolio.
Question
A basic assumption of the Markowitz model is that investors base decisions solely on expected return and risk.
Question
An investor is risk neutral if she chooses the asset with lower risk given a choice of several assets with equal returns.
Question
Prior to the work of Markowitz in the late 1950's and early 1960's, portfolio managers did not have a well-developed, quantitative means of measuring risk.
Question
A good portfolio is a collection of individually good assets.
Question
In a three asset portfolio the standard deviation of the portfolio is one third of the square root of the sum of the individual standard deviations.
Question
For a two stock portfolio containing Stocks i and j, the correlation coefficient of returns (rij) is equal to the square root of the covariance (covij).
Question
As the number of risky assets in a portfolio increases, the total risk of the portfolio decreases.
Question
The correlation coefficient and the covariance are measures of the extent to which two random variables move together.
Question
Exhibit 7A.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 2)2 - r1.2 E( σ\sigma 1)E( σ\sigma 2)] -[E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2E( σ\sigma 1)E( σ\sigma 2)]

-Refer to Exhibit 7A.1. Show the minimum portfolio variance for a two stock portfolio when r1.2 = 1.

A)E( σ\sigma 2) -[E( σ\sigma 1) -E( σ\sigma 2)]
B)E( σ\sigma 2) -[E( σ\sigma 1) + E( σ\sigma 2)]
C)E( σ\sigma 1) - [E( σ\sigma 1) -E( σ\sigma 2)]
D)E( σ\sigma 1) /[E( σ\sigma 1) + E( σ\sigma 2)]
E)None of the above
Question
Assuming that everyone agrees on the efficient frontier (given a set of costs), there would be consensus that the optimal portfolio on the frontier would be where the ratio of return per unit of risk was greatest.
Question
The combination of two assets that are completely negatively correlated provides maximum returns.
Question
Markowitz assumed that, given an expected return, investors prefer to minimize risk.
Question
If the covariance of two stocks is positive, these stocks tend to move together over time.
Question
Increasing the correlation among assets in a portfolio results in an increase in the standard deviation of the portfolio.
Question
Exhibit 7B.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 1)2 - r1.2 E( σ\sigma 1) E( σ\sigma 2)] - [E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2 E( σ\sigma 1) E( σ\sigma 2)]

-Refer to Exhibit 7B.1. What is the value of W1 when r1.2 = -1 and E( σ\sigma 1) = .10 and E( σ\sigma 2) = .12?

A)45.46%
B)50.00%
C)59.45%
D)54.55%
E)74.55%
Question
Risk is defined as the uncertainty of future outcomes.
Question
An individual investor's utility curves specify the tradeoffs he or she is willing to make between

A)high risk and low risk assets.
B)high return and low return assets.
C)covariance and correlation.
D)return and risk.
E)efficient portfolios.
Question
Markowitz believes that any asset or portfolio of assets can be described by ____ parameter(s).

A)One
B)Two
C)Three
D)Four
E)Five
Question
Investors choose a portfolio on the efficient frontier based on their utility functions that reflect their attitudes towards risk.
Question
The purpose of calculating the covariance between two stocks is to provide a(n) ____ measure of their movement together.

A)Absolute
B)Relative
C)Indexed
D)Loglinear
E)Squared
Question
Which of the following statements about the correlation coefficient is false?

A)The values range between -1 to +1.
B)A value of +1 implies that the returns for the two stocks move together in a completely linear manner.
C)A value of -1 implies that the returns move in a completely opposite direction.
D)A value of zero means that the returns are independent.
E)None of the above (that is, all statements are true)
Question
A portfolio is efficient if no other asset or portfolios offer higher expected return with the same (or lower) risk or lower risk with the same (or higher) expected return.
Question
Semivariance, when applied to portfolio theory, is concerned with

A)The square root of deviations from the mean.
B)All deviations below the mean.
C)All deviations above the mean.
D)All deviations.
E)The summation of the squared deviations from the mean.
Question
The Markowitz model is based on several assumptions regarding investor behavior. Which of the following is not such any assumption?

A)Investors consider each investment alternative as being represented by a probability distribution of expected returns over some holding period.
B)Investors maximize one-period expected utility.
C)Investors estimate the risk of the portfolio on the basis of the variability of expected returns.
D)Investors base decisions solely on expected return and risk.
E)None of the above (that is, all are assumptions of the Markowitz model)
Question
The probability of an adverse outcome is a definition of

A)Statistics.
B)Variance.
C)Random.
D)Risk.
E)Semi-variance above the mean.
Question
As the correlation coefficient between two assets decreases, the shape of the efficient frontier

A)approaches a horizontal straight line.
B)bends out.
C)bends in.
D)approaches a vertical straight line.
E)none of the above.
Question
A portfolio manager is considering adding another security to his portfolio. The correlations of the 5 alternatives available are listed below. Which security would enable the highest level of risk diversification?

A)0.0
B)0.25
C)-0.25
D)-0.75
E)1.0
Question
A portfolio is considered to be efficient if:

A)No other portfolio offers higher expected returns with the same risk.
B)No other portfolio offers lower risk with the same expected return.
C)There is no portfolio with a higher return.
D)Choices a and b
E)All of the above
Question
A measure that only considers deviations above the mean is semi-variance.
Question
The optimal portfolio is identified at the point of tangency between the efficient frontier and the

A)highest possible utility curve.
B)lowest possible utility curve.
C)middle range utility curve.
D)steepest utility curve.
E)flattest utility curve.
Question
You are given a two asset portfolio with a fixed correlation coefficient. If the weights of the two assets are varied the expected portfolio return would be ____ and the expected portfolio standard deviation would be ____.

A)Nonlinear, elliptical
B)Nonlinear, circular
C)Linear, elliptical
D)Linear, circular
E)Circular, elliptical
Question
In a two stock portfolio, if the correlation coefficient between two stocks were to decrease over time, everything else remaining constant, the portfolio's risk would

A)Decrease.
B)Remain constant.
C)Increase.
D)Fluctuate positively and negatively.
E)Be a negative value.
Question
When individuals evaluate their portfolios they should evaluate

A)All the U.S. and non-U.S. stocks.
B)All marketable securities.
C)All marketable securities and other liquid assets.
D)All assets.
E)All assets and liabilities.
Question
The set of portfolios with the maximum rate of return for every given risk level is known as the optimal frontier.
Question
Given a portfolio of stocks, the envelope curve containing the set of best possible combinations is known as the

A)Efficient portfolio.
B)Utility curve.
C)Efficient frontier.
D)Last frontier.
E)Capital asset pricing model.
Question
If equal risk is added moving along the envelope curve containing the best possible combinations the return will

A)Decrease at an increasing rate.
B)Decrease at a decreasing rate.
C)Increase at an increasing rate.
D)Increase at a decreasing rate.
E)Remain constant.
Question
The slope of the efficient frontier is calculated as follows

A)E(Rportfolio)/E( σ\sigma portfolio)
B)E( σ\sigma portfolio)/ E(Rportfolio)
C) Δ\Delta E(Rportfolio)/ Δ\Delta E( σ\sigma portfolio)
D) Δ\Delta E( σ\sigma portfolio)/ Δ\Delta E(Rportfolio)
E)None of the above
Question
Between 1986 and 1996, the standard deviation of the returns for the NYSE and the DJIA indexes were 0.10 and 0.09, respectively, and the covariance of these index returns was 0.0009. What was the correlation coefficient between the two market indicators?

A).1000
B).1100
C).1258
D).1322
E).1164
Question
Between 1990 and 2000, the standard deviation of the returns for the NIKKEI and the DJIA indexes were 0.18 and 0.16, respectively, and the covariance of these index returns was 0.003. What was the correlation coefficient between the two market indicators?

A)9.6
B)0.0187
C)0.1042
D)0.0166
E)0.343
Question
All of the following are common risk measurements except

A)Standard deviation
B)Variance
C)Semivariance
D)Covariance
E)Range of returns
Question
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Del ton Inc. 50,00010% Efley Co. 40,00011% Grippon Inc. 60,00016%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Del ton Inc. } & 50,000 & 10 \% \\\text { Efley Co. } & 40,000 & 11 \% \\\text { Grippon Inc. } & 60,000 & 16 \%\end{array}

A)14.89%
B)16.22%
C)12.66%
D)13.85%
E)16.99%
Question
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Lupko Inc. 50,00013% Mackey Co. 25,0009% Nippon Inc. 75,00014%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Lupko Inc. } & 50,000 & 13 \% \\\text { Mackey Co. } & 25,000 & 9 \% \\\text { Nippon Inc. } & 75,000 & 14 \%\end{array}

A)12.04%
B)12.83%
C)13.07%
D)15.89%
E)17.91%
Question
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Ando Inc. 95,00012.0% Bee Co. 32,0008.75% Cool Inc. 65,00017.7%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Ando Inc. } & 95,000 & 12.0 \% \\\text { Bee Co. } & 32,000 & 8.75 \% \\\text { Cool Inc. } & 65,000 & 17.7 \%\end{array}

A)18.45%
B)12.82%
C)13.38%
D)15.27%
E)16.67%
Question
The most important criteria when adding new investments to a portfolio is the

A)Expected return of the new investment.
B)Standard deviation of the new investment.
C)Correlation of the new investment with the portfolio.
D)Both a and b
E)All of the above are equally important
Question
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Alko Inc. 25,00038% Belmont Co. 100,00010% Cardo Inc. 75,00016%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Alko Inc. } & 25,000 & 38 \% \\\text { Belmont Co. } & 100,000 & 10 \% \\\text { Cardo Inc. } & 75,000 & 16 \%\end{array}

A)21.33%
B)12.50%
C)32.00%
D)15.75%
E)16.80%
Question
All of the following are assumptions of the Markowitz model except

A)Risk is measured based on the variability of returns.
B)Investors maximize one-period expected utility.
C)Investors' utility curves demonstrate properties of diminishing marginal utility of wealth.
D)Investors base decisions solely on expected return and time.
E)All of the above
Question
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Xerox 125,0008% Yelcon 250,00025% Zwiebal 175,00016%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Xerox } & 125,000 & 8 \% \\\text { Yelcon } & 250,000 & 25 \% \\\text { Zwiebal } & 175,000 & 16 \%\end{array}

A)18.27%
B)14.33%
C)16.33%
D)12.72%
E)16.45%
Question
The slope of the utility curves for a strongly risk-averse investor, relative to the slope of the utility curves for a less risk-averse investor, will

A)Be steeper.
B)Be flatter.
C)Be vertical.
D)Be horizontal.
E)None of the above.
Question
When assessing the risk impact of adding a new security to a portfolio, it is necessary to consider the

A)New securities variance
B)Variance of every security in the portfolio
C)Weight of every security in the portfolio
D)Average covariance of the new security with every security in the portfolio
E)All of the above
Question
Between 1980 and 1990, the standard deviation of the returns for the NIKKEI and the DJIA indexes were 0.19 and 0.06, respectively, and the covariance of these index returns was 0.0014. What was the correlation coefficient between the two market indicators?

A)8.1428
B)0.0233
C)0.0073
D)0.2514
E)0.1228
Question
Between 1975 and 1985, the standard deviation of the returns for the NYSE and the S&P 500 indexes were 0.06 and 0.07, respectively, and the covariance of these index returns was 0.0008. What was the correlation coefficient between the two market indicators?

A).1525
B).1388
C).1458
D).1622
E).1064
Question
Between 1980 and 2000, the standard deviation of the returns for the NIKKEI and the DJIA indexes were 0.08 and 0.10, respectively, and the covariance of these index returns was 0.0007. What was the correlation coefficient between the two market indicators?

A).0906
B).0985
C).0796
D).0875
E).0654
Question
A positive covariance between two variables indicates that

A)the two variables move in different directions.
B)the two variables move in the same direction.
C)the two variables are low risk.
D)the two variables are high risk.
E)the two variables are risk free.
Question
A portfolio of two securities that are perfectly positively correlated has

A)A standard deviation that is the weighted average of the individual securities standard deviations.
B)An expected return that is the weighted average of the individual securities expected returns.
C)No diversification benefit over holding either of the securities independently.
D)Both b and c
E)All of the above
Question
Between 1994 and 2004, the standard deviation of the returns for the S&P 500 and the NYSE indexes were 0.27 and 0.14, respectively, and the covariance of these index returns was 0.03. What was the correlation coefficient between the two market indicators?

A)1.26
B)0.7937
C)0.2142
D)0.1111
E)0.44
Question
A positive relationship between expected return and expected risk is consistent with

A)investors being risk seekers.
B)investors being risk avoiders.
C)investors being risk averse.
D)all of the above.
E)none of the above.
Question
Exhibit 7.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=15%(σA)=8%(σB)=9.5%WA=0.25WB=0.75CovAB=0.006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 8 \% & \left( \sigma _ { \mathrm { B } } \right) = 9.5 \% \\W _ { \mathrm { A } } = 0.25 & W _ { \mathrm { B } } = 0.75 \\\operatorname { Cov } _ { \mathrm { A } B } = 0.006\end{array}

-Refer to Exhibit 7.1. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.79%
B)12.5%
C)13.75%
D)7.72%
E)12%
Question
Exhibit 7.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=25%E(RB)=15%(σA)=18%(σB)=11%WA=0.75WB=0.25COVABB=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 25 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 18 \% & \left( \sigma _ { \mathrm { B } } \right) = 11 \% \\W _ { \mathrm { A } } = 0.75 & W _ { \mathrm { B } } = 0.25 \\\mathrm { CO } V _ { \mathrm { AB } _ { \mathrm { B } } } = - 0.0009\end{array}

-Refer to Exhibit 7.2. What is the standard deviation of this portfolio?

A)5.45%
B)18.64%
C)20.0%
D)22.5%
E)13.65%
Question
Exhibit 7.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=9%E(RB)=11%(σA)=4%(σB)=6%WA=0.4WB=0.6COVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 9 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 11 \% \\\left( \sigma _ { \mathrm { A } } \right) = 4 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV }_ { A,B } = 0.0011\end{array}

-Refer to Exhibit 7.3. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.95%
B)9.30%
C)9.95%
D)10.20%
E)10.70%
Question
Exhibit 7.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=8%(σA)=6%(σB)=5% WA=0.3 WB=0.7COVA,B=0.0008\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 8 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.3 & \mathrm {~W} _ { \mathrm { B } } = 0.7 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0008\end{array}

-Refer to Exhibit 7.4. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.6%
B)8.1%
C)9.3%
D)10.2%
E)11.6%
Question
Exhibit 7.9
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=18%E(RB)=13%(σA)=7%(σB)=6%WA=0.3WB=0.7COVVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 18 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 13 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.3 & W _ { \mathrm { B } } = 0.7 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0011\end{array}

-Refer to Exhibit 7.9. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)10.10%
B)11.60%
C)13.88%
D)14.50%
E)15.37%
Question
Exhibit 7.9
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=18%E(RB)=13%(σA)=7%(σB)=6%WA=0.3WB=0.7COVVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 18 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 13 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.3 & W _ { \mathrm { B } } = 0.7 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0011\end{array}

-Refer to Exhibit 7.9. What is the standard deviation of this portfolio?

A)5.16%
B)5.89%
C)6.11%
D)6.57%
E)7.02%
Question
Exhibit 7.8
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=14%(σA)=7%(σB)=8%WA=0.7WB=0.3COVA,B=0.0013\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.7 & W _ { \mathrm { B } } = 0.3 \\\mathrm { COV } \\\mathrm { A,B } & = 0.0013\end{array}

-Refer to Exhibit 7.8. What is the standard deviation of this portfolio?

A)4.51%
B)5.94%
C)6.75%
D)7.09%
E)8.62%
Question
Exhibit 7.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=25%E(RB)=15%(σA)=18%(σB)=11%WA=0.75WB=0.25COVABB=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 25 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 18 \% & \left( \sigma _ { \mathrm { B } } \right) = 11 \% \\W _ { \mathrm { A } } = 0.75 & W _ { \mathrm { B } } = 0.25 \\\mathrm { CO } V _ { \mathrm { AB } _ { \mathrm { B } } } = - 0.0009\end{array}

-Refer to Exhibit 7.2. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)18.64%
B)20.0%
C)22.5%
D)13.65%
E)11%
Question
Exhibit 7.8
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=14%(σA)=7%(σB)=8%WA=0.7WB=0.3COVA,B=0.0013\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.7 & W _ { \mathrm { B } } = 0.3 \\\mathrm { COV } \\\mathrm { A,B } & = 0.0013\end{array}

-Refer to Exhibit 7.8. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)6.4%
B)9.1%
C)10.2%
D)10.8%
E)11.2%
Question
Exhibit 7.10
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=14%(σA)=3%(σB)=8%WA=0.5WB=0.5COVVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 3 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.10. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)11%
B)12%
C)13%
D)14%
E)15%
Question
Exhibit 7.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=8%E(RB)=15%(σA)=7%(σB)=10%WA=0.4WB=0.6COVVA,B=0.0006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 8 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 10 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0006\end{array}

-Refer to Exhibit 7.5. What is the standard deviation of this portfolio?

A)3.89%
B)4.61%
C)5.02%
D)6.83%
E)6.09%
Question
Exhibit 7.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=10%(σA)=9%(σB)=7%WA=0.5WB=0.5COVVA,B=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 10 \% \\\left( \sigma _ { \mathrm { A } } \right) = 9 \% & \left( \sigma _ { \mathrm { B } } \right) = 7 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0009\end{array}

-Refer to Exhibit 7.6. What is the standard deviation of this portfolio?

A)6.08%
B)5.89%
C)7.06%
D)6.54%
E)7.26%
Question
Exhibit 7.7
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=7%E(RB)=9%(σA)=6%(σB)=5% WA=0.6 WB=0.4COVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 7 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 9 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.6 & \mathrm {~W} _ { \mathrm { B } } = 0.4 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.7. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)5.8%
B)6.1%
C)6.9%
D)7.8%
E)8.9%
Question
Exhibit 7.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=8%(σA)=6%(σB)=5% WA=0.3 WB=0.7COVA,B=0.0008\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 8 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.3 & \mathrm {~W} _ { \mathrm { B } } = 0.7 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0008\end{array}

-Refer to Exhibit 7.4. What is the standard deviation of this portfolio?

A)5.02%
B)3.88%
C)6.21%
D)4.04%
E)4.34%
Question
Exhibit 7.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=15%(σA)=8%(σB)=9.5%WA=0.25WB=0.75CovAB=0.006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 8 \% & \left( \sigma _ { \mathrm { B } } \right) = 9.5 \% \\W _ { \mathrm { A } } = 0.25 & W _ { \mathrm { B } } = 0.75 \\\operatorname { Cov } _ { \mathrm { A } B } = 0.006\end{array}

-Refer to Exhibit 7.1. What is the standard deviation of this portfolio?

A)8.79%
B)13.75%
C)12.5%
D)7.72%
E)5.64%
Question
Exhibit 7.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=8%E(RB)=15%(σA)=7%(σB)=10%WA=0.4WB=0.6COVVA,B=0.0006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 8 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 10 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0006\end{array}

-Refer to Exhibit 7.5. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.0%
B)12.2%
C)7.4%
D)9.1%
E)11.6%
Question
Exhibit 7.10
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=14%(σA)=3%(σB)=8%WA=0.5WB=0.5COVVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 3 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.10. What is the standard deviation of this portfolio?

A)3.02%
B)4.88%
C)5.24%
D)5.98%
E)6.52%
Question
Exhibit 7.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=10%(σA)=9%(σB)=7%WA=0.5WB=0.5COVVA,B=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 10 \% \\\left( \sigma _ { \mathrm { A } } \right) = 9 \% & \left( \sigma _ { \mathrm { B } } \right) = 7 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0009\end{array}

-Refer to Exhibit 7.6. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)10.6 %
B)10.2%
C)13.0%
D)11.9%
E)14.0%
Question
Exhibit 7.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=9%E(RB)=11%(σA)=4%(σB)=6%WA=0.4WB=0.6COVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 9 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 11 \% \\\left( \sigma _ { \mathrm { A } } \right) = 4 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV }_ { A,B } = 0.0011\end{array}

-Refer to Exhibit 7.3. What is the standard deviation of this portfolio?

A)3.68%
B)4.56%
C)4.99%
D)5.16%
E)6.02%
Question
Exhibit 7.7
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=7%E(RB)=9%(σA)=6%(σB)=5% WA=0.6 WB=0.4COVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 7 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 9 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.6 & \mathrm {~W} _ { \mathrm { B } } = 0.4 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.7. What is the standard deviation of this portfolio?

A)4.87%
B)3.62%
C)4.13%
D)5.76%
E)6.02%
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/97
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: An Introduction to Portfolio Management
1
Exhibit 7B.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 1)2 - r1.2 E( σ\sigma 1) E( σ\sigma 2)] - [E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2 E( σ\sigma 1) E( σ\sigma 2)]

-Refer to Exhibit 7B.1. Show the minimum portfolio variance for a portfolio of two risky assets when r1.2 = -1.

A)E( σ\sigma 1) /[E( σ\sigma 1) + E( σ\sigma 2)]
B)E( σ\sigma 1) / [E( σ\sigma 1) - E( σ\sigma 2)]
C)E( σ\sigma 2) -[E( σ\sigma 1) + E( σ\sigma 2)]
D)E( σ\sigma 2) /[E( σ\sigma 1)- E( σ\sigma 2)]
E)None of the above
E( σ\sigma 2) -[E( σ\sigma 1) + E( σ\sigma 2)]
2
The expected return and standard deviation of a portfolio of risky assets is equal to the weighted average of the individual asset's expected returns and standard deviation.
False
3
Exhibit 7A.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 2)2 - r1.2 E( σ\sigma 1)E( σ\sigma 2)] -[E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2E( σ\sigma 1)E( σ\sigma 2)]

-Refer to Exhibit 7A.1. What weight of security 1 gives the minimum portfolio variance when r1.2 = .60, E( σ\sigma 1) = .10 and E( σ\sigma 2) = .16?

A).0244
B).3679
C).5697
D).6309
E).9756
.9756
4
Combining assets that are not perfectly correlated does affect both the expected return of the portfolio as well as the risk of the portfolio.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
5
A basic assumption of the Markowitz model is that investors base decisions solely on expected return and risk.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
6
An investor is risk neutral if she chooses the asset with lower risk given a choice of several assets with equal returns.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
7
Prior to the work of Markowitz in the late 1950's and early 1960's, portfolio managers did not have a well-developed, quantitative means of measuring risk.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
8
A good portfolio is a collection of individually good assets.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
9
In a three asset portfolio the standard deviation of the portfolio is one third of the square root of the sum of the individual standard deviations.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
10
For a two stock portfolio containing Stocks i and j, the correlation coefficient of returns (rij) is equal to the square root of the covariance (covij).
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
11
As the number of risky assets in a portfolio increases, the total risk of the portfolio decreases.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
12
The correlation coefficient and the covariance are measures of the extent to which two random variables move together.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
13
Exhibit 7A.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 2)2 - r1.2 E( σ\sigma 1)E( σ\sigma 2)] -[E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2E( σ\sigma 1)E( σ\sigma 2)]

-Refer to Exhibit 7A.1. Show the minimum portfolio variance for a two stock portfolio when r1.2 = 1.

A)E( σ\sigma 2) -[E( σ\sigma 1) -E( σ\sigma 2)]
B)E( σ\sigma 2) -[E( σ\sigma 1) + E( σ\sigma 2)]
C)E( σ\sigma 1) - [E( σ\sigma 1) -E( σ\sigma 2)]
D)E( σ\sigma 1) /[E( σ\sigma 1) + E( σ\sigma 2)]
E)None of the above
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
14
Assuming that everyone agrees on the efficient frontier (given a set of costs), there would be consensus that the optimal portfolio on the frontier would be where the ratio of return per unit of risk was greatest.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
15
The combination of two assets that are completely negatively correlated provides maximum returns.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
16
Markowitz assumed that, given an expected return, investors prefer to minimize risk.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
17
If the covariance of two stocks is positive, these stocks tend to move together over time.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
18
Increasing the correlation among assets in a portfolio results in an increase in the standard deviation of the portfolio.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
19
Exhibit 7B.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)
The general equation for the weight of the first security to achieve the minimum variance (in a two stock portfolio) is given by:
W1 = [E( σ\sigma 1)2 - r1.2 E( σ\sigma 1) E( σ\sigma 2)] - [E( σ\sigma 1)2 + E( σ\sigma 2)2 - 2 r1.2 E( σ\sigma 1) E( σ\sigma 2)]

-Refer to Exhibit 7B.1. What is the value of W1 when r1.2 = -1 and E( σ\sigma 1) = .10 and E( σ\sigma 2) = .12?

A)45.46%
B)50.00%
C)59.45%
D)54.55%
E)74.55%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
20
Risk is defined as the uncertainty of future outcomes.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
21
An individual investor's utility curves specify the tradeoffs he or she is willing to make between

A)high risk and low risk assets.
B)high return and low return assets.
C)covariance and correlation.
D)return and risk.
E)efficient portfolios.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
22
Markowitz believes that any asset or portfolio of assets can be described by ____ parameter(s).

A)One
B)Two
C)Three
D)Four
E)Five
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
23
Investors choose a portfolio on the efficient frontier based on their utility functions that reflect their attitudes towards risk.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
24
The purpose of calculating the covariance between two stocks is to provide a(n) ____ measure of their movement together.

A)Absolute
B)Relative
C)Indexed
D)Loglinear
E)Squared
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
25
Which of the following statements about the correlation coefficient is false?

A)The values range between -1 to +1.
B)A value of +1 implies that the returns for the two stocks move together in a completely linear manner.
C)A value of -1 implies that the returns move in a completely opposite direction.
D)A value of zero means that the returns are independent.
E)None of the above (that is, all statements are true)
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
26
A portfolio is efficient if no other asset or portfolios offer higher expected return with the same (or lower) risk or lower risk with the same (or higher) expected return.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
27
Semivariance, when applied to portfolio theory, is concerned with

A)The square root of deviations from the mean.
B)All deviations below the mean.
C)All deviations above the mean.
D)All deviations.
E)The summation of the squared deviations from the mean.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
28
The Markowitz model is based on several assumptions regarding investor behavior. Which of the following is not such any assumption?

A)Investors consider each investment alternative as being represented by a probability distribution of expected returns over some holding period.
B)Investors maximize one-period expected utility.
C)Investors estimate the risk of the portfolio on the basis of the variability of expected returns.
D)Investors base decisions solely on expected return and risk.
E)None of the above (that is, all are assumptions of the Markowitz model)
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
29
The probability of an adverse outcome is a definition of

A)Statistics.
B)Variance.
C)Random.
D)Risk.
E)Semi-variance above the mean.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
30
As the correlation coefficient between two assets decreases, the shape of the efficient frontier

A)approaches a horizontal straight line.
B)bends out.
C)bends in.
D)approaches a vertical straight line.
E)none of the above.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
31
A portfolio manager is considering adding another security to his portfolio. The correlations of the 5 alternatives available are listed below. Which security would enable the highest level of risk diversification?

A)0.0
B)0.25
C)-0.25
D)-0.75
E)1.0
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
32
A portfolio is considered to be efficient if:

A)No other portfolio offers higher expected returns with the same risk.
B)No other portfolio offers lower risk with the same expected return.
C)There is no portfolio with a higher return.
D)Choices a and b
E)All of the above
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
33
A measure that only considers deviations above the mean is semi-variance.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
34
The optimal portfolio is identified at the point of tangency between the efficient frontier and the

A)highest possible utility curve.
B)lowest possible utility curve.
C)middle range utility curve.
D)steepest utility curve.
E)flattest utility curve.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
35
You are given a two asset portfolio with a fixed correlation coefficient. If the weights of the two assets are varied the expected portfolio return would be ____ and the expected portfolio standard deviation would be ____.

A)Nonlinear, elliptical
B)Nonlinear, circular
C)Linear, elliptical
D)Linear, circular
E)Circular, elliptical
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
36
In a two stock portfolio, if the correlation coefficient between two stocks were to decrease over time, everything else remaining constant, the portfolio's risk would

A)Decrease.
B)Remain constant.
C)Increase.
D)Fluctuate positively and negatively.
E)Be a negative value.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
37
When individuals evaluate their portfolios they should evaluate

A)All the U.S. and non-U.S. stocks.
B)All marketable securities.
C)All marketable securities and other liquid assets.
D)All assets.
E)All assets and liabilities.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
38
The set of portfolios with the maximum rate of return for every given risk level is known as the optimal frontier.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
39
Given a portfolio of stocks, the envelope curve containing the set of best possible combinations is known as the

A)Efficient portfolio.
B)Utility curve.
C)Efficient frontier.
D)Last frontier.
E)Capital asset pricing model.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
40
If equal risk is added moving along the envelope curve containing the best possible combinations the return will

A)Decrease at an increasing rate.
B)Decrease at a decreasing rate.
C)Increase at an increasing rate.
D)Increase at a decreasing rate.
E)Remain constant.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
41
The slope of the efficient frontier is calculated as follows

A)E(Rportfolio)/E( σ\sigma portfolio)
B)E( σ\sigma portfolio)/ E(Rportfolio)
C) Δ\Delta E(Rportfolio)/ Δ\Delta E( σ\sigma portfolio)
D) Δ\Delta E( σ\sigma portfolio)/ Δ\Delta E(Rportfolio)
E)None of the above
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
42
Between 1986 and 1996, the standard deviation of the returns for the NYSE and the DJIA indexes were 0.10 and 0.09, respectively, and the covariance of these index returns was 0.0009. What was the correlation coefficient between the two market indicators?

A).1000
B).1100
C).1258
D).1322
E).1164
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
43
Between 1990 and 2000, the standard deviation of the returns for the NIKKEI and the DJIA indexes were 0.18 and 0.16, respectively, and the covariance of these index returns was 0.003. What was the correlation coefficient between the two market indicators?

A)9.6
B)0.0187
C)0.1042
D)0.0166
E)0.343
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
44
All of the following are common risk measurements except

A)Standard deviation
B)Variance
C)Semivariance
D)Covariance
E)Range of returns
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
45
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Del ton Inc. 50,00010% Efley Co. 40,00011% Grippon Inc. 60,00016%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Del ton Inc. } & 50,000 & 10 \% \\\text { Efley Co. } & 40,000 & 11 \% \\\text { Grippon Inc. } & 60,000 & 16 \%\end{array}

A)14.89%
B)16.22%
C)12.66%
D)13.85%
E)16.99%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
46
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Lupko Inc. 50,00013% Mackey Co. 25,0009% Nippon Inc. 75,00014%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Lupko Inc. } & 50,000 & 13 \% \\\text { Mackey Co. } & 25,000 & 9 \% \\\text { Nippon Inc. } & 75,000 & 14 \%\end{array}

A)12.04%
B)12.83%
C)13.07%
D)15.89%
E)17.91%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
47
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Ando Inc. 95,00012.0% Bee Co. 32,0008.75% Cool Inc. 65,00017.7%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Ando Inc. } & 95,000 & 12.0 \% \\\text { Bee Co. } & 32,000 & 8.75 \% \\\text { Cool Inc. } & 65,000 & 17.7 \%\end{array}

A)18.45%
B)12.82%
C)13.38%
D)15.27%
E)16.67%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
48
The most important criteria when adding new investments to a portfolio is the

A)Expected return of the new investment.
B)Standard deviation of the new investment.
C)Correlation of the new investment with the portfolio.
D)Both a and b
E)All of the above are equally important
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
49
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Alko Inc. 25,00038% Belmont Co. 100,00010% Cardo Inc. 75,00016%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Alko Inc. } & 25,000 & 38 \% \\\text { Belmont Co. } & 100,000 & 10 \% \\\text { Cardo Inc. } & 75,000 & 16 \%\end{array}

A)21.33%
B)12.50%
C)32.00%
D)15.75%
E)16.80%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
50
All of the following are assumptions of the Markowitz model except

A)Risk is measured based on the variability of returns.
B)Investors maximize one-period expected utility.
C)Investors' utility curves demonstrate properties of diminishing marginal utility of wealth.
D)Investors base decisions solely on expected return and time.
E)All of the above
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
51
What is the expected return of the three stock portfolio described below?  Common Stock  Market Value  Expected Return  Xerox 125,0008% Yelcon 250,00025% Zwiebal 175,00016%\begin{array} { l c c } \text { Common Stock } & \text { Market Value } & \text { Expected Return } \\\hline \text { Xerox } & 125,000 & 8 \% \\\text { Yelcon } & 250,000 & 25 \% \\\text { Zwiebal } & 175,000 & 16 \%\end{array}

A)18.27%
B)14.33%
C)16.33%
D)12.72%
E)16.45%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
52
The slope of the utility curves for a strongly risk-averse investor, relative to the slope of the utility curves for a less risk-averse investor, will

A)Be steeper.
B)Be flatter.
C)Be vertical.
D)Be horizontal.
E)None of the above.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
53
When assessing the risk impact of adding a new security to a portfolio, it is necessary to consider the

A)New securities variance
B)Variance of every security in the portfolio
C)Weight of every security in the portfolio
D)Average covariance of the new security with every security in the portfolio
E)All of the above
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
54
Between 1980 and 1990, the standard deviation of the returns for the NIKKEI and the DJIA indexes were 0.19 and 0.06, respectively, and the covariance of these index returns was 0.0014. What was the correlation coefficient between the two market indicators?

A)8.1428
B)0.0233
C)0.0073
D)0.2514
E)0.1228
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
55
Between 1975 and 1985, the standard deviation of the returns for the NYSE and the S&P 500 indexes were 0.06 and 0.07, respectively, and the covariance of these index returns was 0.0008. What was the correlation coefficient between the two market indicators?

A).1525
B).1388
C).1458
D).1622
E).1064
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
56
Between 1980 and 2000, the standard deviation of the returns for the NIKKEI and the DJIA indexes were 0.08 and 0.10, respectively, and the covariance of these index returns was 0.0007. What was the correlation coefficient between the two market indicators?

A).0906
B).0985
C).0796
D).0875
E).0654
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
57
A positive covariance between two variables indicates that

A)the two variables move in different directions.
B)the two variables move in the same direction.
C)the two variables are low risk.
D)the two variables are high risk.
E)the two variables are risk free.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
58
A portfolio of two securities that are perfectly positively correlated has

A)A standard deviation that is the weighted average of the individual securities standard deviations.
B)An expected return that is the weighted average of the individual securities expected returns.
C)No diversification benefit over holding either of the securities independently.
D)Both b and c
E)All of the above
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
59
Between 1994 and 2004, the standard deviation of the returns for the S&P 500 and the NYSE indexes were 0.27 and 0.14, respectively, and the covariance of these index returns was 0.03. What was the correlation coefficient between the two market indicators?

A)1.26
B)0.7937
C)0.2142
D)0.1111
E)0.44
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
60
A positive relationship between expected return and expected risk is consistent with

A)investors being risk seekers.
B)investors being risk avoiders.
C)investors being risk averse.
D)all of the above.
E)none of the above.
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
61
Exhibit 7.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=15%(σA)=8%(σB)=9.5%WA=0.25WB=0.75CovAB=0.006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 8 \% & \left( \sigma _ { \mathrm { B } } \right) = 9.5 \% \\W _ { \mathrm { A } } = 0.25 & W _ { \mathrm { B } } = 0.75 \\\operatorname { Cov } _ { \mathrm { A } B } = 0.006\end{array}

-Refer to Exhibit 7.1. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.79%
B)12.5%
C)13.75%
D)7.72%
E)12%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
62
Exhibit 7.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=25%E(RB)=15%(σA)=18%(σB)=11%WA=0.75WB=0.25COVABB=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 25 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 18 \% & \left( \sigma _ { \mathrm { B } } \right) = 11 \% \\W _ { \mathrm { A } } = 0.75 & W _ { \mathrm { B } } = 0.25 \\\mathrm { CO } V _ { \mathrm { AB } _ { \mathrm { B } } } = - 0.0009\end{array}

-Refer to Exhibit 7.2. What is the standard deviation of this portfolio?

A)5.45%
B)18.64%
C)20.0%
D)22.5%
E)13.65%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
63
Exhibit 7.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=9%E(RB)=11%(σA)=4%(σB)=6%WA=0.4WB=0.6COVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 9 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 11 \% \\\left( \sigma _ { \mathrm { A } } \right) = 4 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV }_ { A,B } = 0.0011\end{array}

-Refer to Exhibit 7.3. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.95%
B)9.30%
C)9.95%
D)10.20%
E)10.70%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
64
Exhibit 7.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=8%(σA)=6%(σB)=5% WA=0.3 WB=0.7COVA,B=0.0008\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 8 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.3 & \mathrm {~W} _ { \mathrm { B } } = 0.7 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0008\end{array}

-Refer to Exhibit 7.4. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.6%
B)8.1%
C)9.3%
D)10.2%
E)11.6%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
65
Exhibit 7.9
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=18%E(RB)=13%(σA)=7%(σB)=6%WA=0.3WB=0.7COVVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 18 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 13 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.3 & W _ { \mathrm { B } } = 0.7 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0011\end{array}

-Refer to Exhibit 7.9. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)10.10%
B)11.60%
C)13.88%
D)14.50%
E)15.37%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
66
Exhibit 7.9
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=18%E(RB)=13%(σA)=7%(σB)=6%WA=0.3WB=0.7COVVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 18 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 13 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.3 & W _ { \mathrm { B } } = 0.7 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0011\end{array}

-Refer to Exhibit 7.9. What is the standard deviation of this portfolio?

A)5.16%
B)5.89%
C)6.11%
D)6.57%
E)7.02%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
67
Exhibit 7.8
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=14%(σA)=7%(σB)=8%WA=0.7WB=0.3COVA,B=0.0013\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.7 & W _ { \mathrm { B } } = 0.3 \\\mathrm { COV } \\\mathrm { A,B } & = 0.0013\end{array}

-Refer to Exhibit 7.8. What is the standard deviation of this portfolio?

A)4.51%
B)5.94%
C)6.75%
D)7.09%
E)8.62%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
68
Exhibit 7.2
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=25%E(RB)=15%(σA)=18%(σB)=11%WA=0.75WB=0.25COVABB=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 25 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 18 \% & \left( \sigma _ { \mathrm { B } } \right) = 11 \% \\W _ { \mathrm { A } } = 0.75 & W _ { \mathrm { B } } = 0.25 \\\mathrm { CO } V _ { \mathrm { AB } _ { \mathrm { B } } } = - 0.0009\end{array}

-Refer to Exhibit 7.2. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)18.64%
B)20.0%
C)22.5%
D)13.65%
E)11%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
69
Exhibit 7.8
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=14%(σA)=7%(σB)=8%WA=0.7WB=0.3COVA,B=0.0013\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.7 & W _ { \mathrm { B } } = 0.3 \\\mathrm { COV } \\\mathrm { A,B } & = 0.0013\end{array}

-Refer to Exhibit 7.8. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)6.4%
B)9.1%
C)10.2%
D)10.8%
E)11.2%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
70
Exhibit 7.10
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=14%(σA)=3%(σB)=8%WA=0.5WB=0.5COVVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 3 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.10. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)11%
B)12%
C)13%
D)14%
E)15%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
71
Exhibit 7.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=8%E(RB)=15%(σA)=7%(σB)=10%WA=0.4WB=0.6COVVA,B=0.0006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 8 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 10 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0006\end{array}

-Refer to Exhibit 7.5. What is the standard deviation of this portfolio?

A)3.89%
B)4.61%
C)5.02%
D)6.83%
E)6.09%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
72
Exhibit 7.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=10%(σA)=9%(σB)=7%WA=0.5WB=0.5COVVA,B=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 10 \% \\\left( \sigma _ { \mathrm { A } } \right) = 9 \% & \left( \sigma _ { \mathrm { B } } \right) = 7 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0009\end{array}

-Refer to Exhibit 7.6. What is the standard deviation of this portfolio?

A)6.08%
B)5.89%
C)7.06%
D)6.54%
E)7.26%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
73
Exhibit 7.7
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=7%E(RB)=9%(σA)=6%(σB)=5% WA=0.6 WB=0.4COVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 7 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 9 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.6 & \mathrm {~W} _ { \mathrm { B } } = 0.4 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.7. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)5.8%
B)6.1%
C)6.9%
D)7.8%
E)8.9%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
74
Exhibit 7.4
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=8%(σA)=6%(σB)=5% WA=0.3 WB=0.7COVA,B=0.0008\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 8 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.3 & \mathrm {~W} _ { \mathrm { B } } = 0.7 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0008\end{array}

-Refer to Exhibit 7.4. What is the standard deviation of this portfolio?

A)5.02%
B)3.88%
C)6.21%
D)4.04%
E)4.34%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
75
Exhibit 7.1
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=10%E(RB)=15%(σA)=8%(σB)=9.5%WA=0.25WB=0.75CovAB=0.006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 10 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 8 \% & \left( \sigma _ { \mathrm { B } } \right) = 9.5 \% \\W _ { \mathrm { A } } = 0.25 & W _ { \mathrm { B } } = 0.75 \\\operatorname { Cov } _ { \mathrm { A } B } = 0.006\end{array}

-Refer to Exhibit 7.1. What is the standard deviation of this portfolio?

A)8.79%
B)13.75%
C)12.5%
D)7.72%
E)5.64%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
76
Exhibit 7.5
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=8%E(RB)=15%(σA)=7%(σB)=10%WA=0.4WB=0.6COVVA,B=0.0006\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 8 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 15 \% \\\left( \sigma _ { \mathrm { A } } \right) = 7 \% & \left( \sigma _ { \mathrm { B } } \right) = 10 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0006\end{array}

-Refer to Exhibit 7.5. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)8.0%
B)12.2%
C)7.4%
D)9.1%
E)11.6%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
77
Exhibit 7.10
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=14%(σA)=3%(σB)=8%WA=0.5WB=0.5COVVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 14 \% \\\left( \sigma _ { \mathrm { A } } \right) = 3 \% & \left( \sigma _ { \mathrm { B } } \right) = 8 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.10. What is the standard deviation of this portfolio?

A)3.02%
B)4.88%
C)5.24%
D)5.98%
E)6.52%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
78
Exhibit 7.6
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=16%E(RB)=10%(σA)=9%(σB)=7%WA=0.5WB=0.5COVVA,B=0.0009\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 16 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 10 \% \\\left( \sigma _ { \mathrm { A } } \right) = 9 \% & \left( \sigma _ { \mathrm { B } } \right) = 7 \% \\W _ { \mathrm { A } } = 0.5 & W _ { \mathrm { B } } = 0.5 \\\mathrm { COV } V _ { \mathrm { A,B } } = 0.0009\end{array}

-Refer to Exhibit 7.6. What is the expected return of a portfolio of two risky assets if the expected return E(Ri), standard deviation ( σ\sigma i), covariance (COVi,j), and asset weight (Wi) are as shown above?

A)10.6 %
B)10.2%
C)13.0%
D)11.9%
E)14.0%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
79
Exhibit 7.3
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=9%E(RB)=11%(σA)=4%(σB)=6%WA=0.4WB=0.6COVA,B=0.0011\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 9 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 11 \% \\\left( \sigma _ { \mathrm { A } } \right) = 4 \% & \left( \sigma _ { \mathrm { B } } \right) = 6 \% \\W _ { \mathrm { A } } = 0.4 & W _ { \mathrm { B } } = 0.6 \\\mathrm { COV }_ { A,B } = 0.0011\end{array}

-Refer to Exhibit 7.3. What is the standard deviation of this portfolio?

A)3.68%
B)4.56%
C)4.99%
D)5.16%
E)6.02%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
80
Exhibit 7.7
USE THE INFORMATION BELOW FOR THE FOLLOWING PROBLEM(S)  Asset (A) Asset (B)E(RA)=7%E(RB)=9%(σA)=6%(σB)=5% WA=0.6 WB=0.4COVA,B=0.0014\begin{array} { c c } \text { Asset } ( \mathrm { A } ) & \text { Asset } ( \mathrm { B } ) \\\hline \mathrm { E } \left( \mathrm { R } _ { \mathrm { A } } \right) = 7 \% & \mathrm { E } \left( \mathrm { R } _ { \mathrm { B } } \right) = 9 \% \\\left( \sigma _ { \mathrm { A } } \right) = 6 \% & \left( \sigma _ { \mathrm { B } } \right) = 5 \% \\\mathrm {~W} _ { \mathrm { A } } = 0.6 & \mathrm {~W} _ { \mathrm { B } } = 0.4 \\\mathrm { CO } V _ { \mathrm { A,B } } = 0.0014\end{array}

-Refer to Exhibit 7.7. What is the standard deviation of this portfolio?

A)4.87%
B)3.62%
C)4.13%
D)5.76%
E)6.02%
Unlock Deck
Unlock for access to all 97 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 97 flashcards in this deck.