Deck 15: Integer Optimization

Full screen (f)
exit full mode
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many excess employees are present in the noon-1 time slot?

A) 2
B) 4
C) 5
D) 6
Use Space or
up arrow
down arrow
to flip the card.
Question
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the quantity of Lava surfboards produced?

A) 2
B) 5
C) 7
D) 10
Question
What should be the value of Integer Tolerance in order to find the guaranteed optimal integer solution?

A) -1
B) 0
C) 0.5
D) 1
Question
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the total number of hours used for the finishing operation?

A) 39.6
B) 34.4
C) 29.2
D) 24.8
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the amount of cash used for Project 2?

A) $ 105,000
B) $ 25,000
C) $ 115,000
D) $ 70,000
Question
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the quantity of Graystone surfboards produced?

A) 2
B) 5
C) 7
D) 10
Question
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the total number of hours used for fabrication?

A) 39.6
B) 34.4
C) 29.2
D) 24.8
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total scrap produced?

A) 1,389
B) 1,390
C) 1,427
D) 1,445
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many excess employees are present in the 4-5 time slot?

A) 0
B) 2
C) 4
D) 6
Question
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the total profit generated?

A) $ 748.28
B) $ 687.46
C) $ 385.65
D) $ 500.00
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-What is the minimum number of total part-time employees needed across all the 4-hour shifts to ensure meeting the staffing requirements?

A) 16
B) 28
C) 24
D) 20
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many part-time employees are present in the 3-4 time slot?

A) 16
B) 14
C) 9
D) 7
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many part-time employees are present in the 8-9 time slot?

A) 4
B) 6
C) 9
D) 14
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-Which of the following best defines a binary variable?

A) It is a general integer variable that is restricted to being between -1 and 1.
B) It is a general integer variable that is restricted to being a multiple of 2.
C) It is a general integer variable that is restricted to being between 0 and 1.
D) It is a general integer variable that is restricted to being greater than 2.
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total number of 14-inch rolls produced?

A) 721
B) 725
C) 728
D) 740
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total number of 10-inch rolls produced?

A) 940
B) 946
C) 950
D) 960
Question
is the parameter that specifies when the Solver algorithm will terminate an optimization process with integer constraints.

A) Mutation Rate
B) Population Size
C) Integer Tolerance
D) Convergence
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total number of 25-inch rolls produced?

A) 630
B) 635
C) 640
D) 645
Question
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-Which of the following constraints Solver uses?

A) $B$14:$C$14 = integer
B) $D$15 > = $D$6
C) $D$16 > = $D$7
D) $D$19 < = 0
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-Which of the following cells is set as the objective cell in Solver?

A) $G$12
B) $F$14
C) $G$14
D) $B$12
Question
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-Which of the following constraints is used in Solver?

A) $F$16:$F$19 >= $F$6:$F$9
B) $B$20:$E$20 < $B$10:$E$10
C) $B$20:$E$20 = binary
D) $F$16:$F$19 <= $F$6:$F$9
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the amount of cash used for Project 5?

A) $ 65,000
B) $ 117,000
C) $ 13,000
D) $ 110,000
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the total cost incurred by the company?

A) $ 8,345.00
B) $ 10,756.80
C) $ 7,289.62
D) $ 9,582.75
Question
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total cost incurred?

A) $ 27,297
B) $ 35,233
C) $ 42,675
D) $ 47,864
Question
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total amount shipped by the Detroit plant to the distribution centers?

A) 750
B) 1,000
C) 1,400
D) 1,300
Question
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total amount shipped by the Atlanta plant to the distribution centers?

A) 600
B) 1,000
C) 1,250
D) 1,300
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the net production at the end of the second quarter?

A) 75
B) 200
C) 450
D) 600
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the net production at the end of the third quarter?

A) 75
B) 200
C) 450
D) 600
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the net production at the end of the first quarter?

A) 75
B) 200
C) 450
D) 600
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the inventory at the end of the first quarter?

A) 725
B) 525
C) 50
D) 75
Question
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-In which of the following plants is the total amount shipped to the distribution centers equal to zero?

A) Dallas
B) Atlanta
C) Detroit
D) Baltimore
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the amount of personnel used for Project 2?

A) 3
B) 4
C) 6
D) 11
Question
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total amount shipped by the Baltimore plant to the distribution centers?

A) 750
B) 1,000
C) 1,250
D) 1,300
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the binary constraint at the end of the third quarter?

A) 75
B) 200
C) 450
D) 0
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the total return obtained from all five projects?

A) $ 860,000
B) $ 550,000
C) $ 700,000
D) $ 395,000
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the return obtained from Project 3?

A) $ 200,000
B) $ 125,000
C) $ 275,000
D) $ 225,000
Question
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-Which of the following constraints is used in Solver?

A) $B$14:$D$14 > = $B$18:$D$18
B) $B$16:$D$16 = binary
C) $B$19:$D$19 < = $B$8:$D$8
D) $B$15:$D$15 = binary
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the total amount of cash used for all five projects?

A) $ 175,000
B) $ 163,000
C) $ 215,000
D) $ 260,000
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the return obtained from Project 5?

A) $ 200,000
B) $ 125,000
C) $ 275,000
D) $ 225,000
Question
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the total amount of personnel used for all five projects?

A) 23
B) 17
C) 10
D) 4
Question
To invoke the binary constraints on the variables, the option bin is chosen from the dropdown box in the Add Constraint dialog.
Question
Explain the method of solving models with general integer variables.
Question
What is the purpose of a heat map?
Question
What is the importance of binary variables in integer optimization models?
Question
If the Integer Tolerance is set to 0.01, the Solver will stop if it finds an integer solution that is within 10% of the optimal solution.
Question
Mathematically, a binary variable x can be represented as x > 2 and integer.
Question
Decision variables that are forced to be integers are called general integer variables.
Question
What is the importance of Integer Tolerance in Solver?
Question
Solver can generate a Sensitivity report for integer models.
Question
Explain the implementation of a project-selection model.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/50
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 15: Integer Optimization
1
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many excess employees are present in the noon-1 time slot?

A) 2
B) 4
C) 5
D) 6
5
2
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the quantity of Lava surfboards produced?

A) 2
B) 5
C) 7
D) 10
7
3
What should be the value of Integer Tolerance in order to find the guaranteed optimal integer solution?

A) -1
B) 0
C) 0.5
D) 1
B
4
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the total number of hours used for the finishing operation?

A) 39.6
B) 34.4
C) 29.2
D) 24.8
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
5
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the amount of cash used for Project 2?

A) $ 105,000
B) $ 25,000
C) $ 115,000
D) $ 70,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
6
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the quantity of Graystone surfboards produced?

A) 2
B) 5
C) 7
D) 10
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
7
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the total number of hours used for fabrication?

A) 39.6
B) 34.4
C) 29.2
D) 24.8
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
8
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total scrap produced?

A) 1,389
B) 1,390
C) 1,427
D) 1,445
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
9
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many excess employees are present in the 4-5 time slot?

A) 0
B) 2
C) 4
D) 6
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
10
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-What is the total profit generated?

A) $ 748.28
B) $ 687.46
C) $ 385.65
D) $ 500.00
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
11
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-What is the minimum number of total part-time employees needed across all the 4-hour shifts to ensure meeting the staffing requirements?

A) 16
B) 28
C) 24
D) 20
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
12
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many part-time employees are present in the 3-4 time slot?

A) 16
B) 14
C) 9
D) 7
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
13
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-How many part-time employees are present in the 8-9 time slot?

A) 4
B) 6
C) 9
D) 14
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
14
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
Coppell Services contracts with outsourcing partners to handle various customer service functions. Based on a study of call volumes provided by one of the firm's partners, the minimum number of staff needed for each hour of the day is as follows:  Hour  Minimum Staff Required 8969101010111211-noon 10 noon-1 81216231534204515\begin{array} { | l | l | } \hline \text { Hour } & \text { Minimum Staff Required } \\\hline 8 - 9 & 6 \\\hline 9 - 10 & 10 \\\hline 10 - 11 & 12 \\\hline 11 \text {-noon } & 10 \\\hline \text { noon-1 } & 8 \\\hline 1 - 2 & 16 \\\hline 2 - 3 & 15 \\\hline 3 - 4 & 20 \\\hline 4 - 5 & 15 \\\hline\end{array} Mr. Coppell hires 6 permanent employees and wants to staff the remaining requirements using part-time employees who work 4-hour shifts (four consecutive hours starting as early as 8 A.M. or as late as 1 P.M.).

-Which of the following best defines a binary variable?

A) It is a general integer variable that is restricted to being between -1 and 1.
B) It is a general integer variable that is restricted to being a multiple of 2.
C) It is a general integer variable that is restricted to being between 0 and 1.
D) It is a general integer variable that is restricted to being greater than 2.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
15
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total number of 14-inch rolls produced?

A) 721
B) 725
C) 728
D) 740
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
16
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total number of 10-inch rolls produced?

A) 940
B) 946
C) 950
D) 960
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
17
is the parameter that specifies when the Solver algorithm will terminate an optimization process with integer constraints.

A) Mutation Rate
B) Population Size
C) Integer Tolerance
D) Convergence
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
18
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver.
A company makes standard 130-inch-wide rolls of thin sheet metal and slits them into smaller rolls to meet customer orders for widths of 10, 14, and 25 inches. Suppose that the company has proposed the following cutting patterns:  A  B  C  D  E 1 Cutting-Stock Problem 23 Data 4 Pattern  10-in rolls  14 in. rolls  25-in. rolls  Scrap 51080106202310733034841000109532241068204\begin{array}{|c|c|c|c|c|c|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } \\\hline 1 & \text { Cutting-Stock Problem } & & & & \\\hline 2 & & & & & \\\hline 3 & \text { Data } & & & & \\\hline 4 & \text { Pattern } & \text { 10-in rolls } & \text { 14 in. rolls } & \text { 25-in. rolls } & \text { Scrap } \\\hline 5 & 1 & 0 & 8 & 0 & 10 \\\hline 6 & 2 & 0 & 2 & 3 & 10 \\\hline 7 & 3 & 3 & 0 & 3 & 4 \\\hline 8 & 4 & 10 & 0 & 0 & 10 \\\hline 9 & 5 & 3 & 2 & 2 & 4 \\\hline 10 & 6 & 8 & 2 & 0 & 4 \\\hline\end{array} Demands for the coming week are 950 10-inch rolls, 725 14-inch roles, and 640 25-inch rolls. Develop a model using the Analytic Solver Platform that will determine how many 130-inch rolls to cut into each of the six patterns in order to meet demand and minimize scrap.

-What is the total number of 25-inch rolls produced?

A) 630
B) 635
C) 640
D) 645
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
19
Stone Age Surfboards is a small manufacturer of two types of popular low-tide surfboards, the Graystone and the Lava models. The manufacturing process consists of two departments: fabrication and finishing. The fabrication department has 8 skilled workers, each of whom works9.25 hours per day. The finishing department has 5 workers, each of whom works a 6-hour shift per day. Each pair of Graystone surfboards requires 2.5 labor hours in the fabrication department and 2 labor hours in finishing. The Lava model requires 4.2 labor-hours in fabrication and 3.6 labor-hours in finishing. The company operates 6 days a week. It makes a per unit profit of $40 on the Graystone model and $60 on the Lava model. The company anticipates selling at least twice as many Lava models as Graystone models.
Use the spreadsheet below for Stone Age Surfboards to answer the following question(s) using integer constraints on variables in the optimization models using the standard Solver.  A  B  C  D 1 Stone Age Surfboards 23 Data 4 Product 5 Department  Graystone  Lava  Limitations (hours) 6 Fabrication 2.54.2747 Finishing 23.63089 Profit/Unit $40.00$60.00101112 Model 13 Graystone  Lava 14 Quantity Produced  Hours Used 15 Fabrication 16 Finishing 1718 Excess Lava 19 Market Mixture 2021 Total Profit 22 Profit Contribution \begin{array}{|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } \\\hline 1 & \text { Stone Age Surfboards } & & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & & & \\\hline 4 & & &{\text { Product }} & \\\hline 5 & \text { Department } & \text { Graystone } & \text { Lava } & \text { Limitations (hours) } \\\hline 6 & \text { Fabrication } & 2.5 & 4.2 & 74 \\\hline 7 & \text { Finishing } & 2 & 3.6 & 30 \\\hline 8 & & & \\\hline 9 & \text { Profit/Unit } & \$ 40.00 & \$ 60.00 \\\hline 10 & & & \\\hline 11 & & & \\\hline 12 & \text { Model } & & \\\hline 13 & & \text { Graystone } & \text { Lava } & \\\hline 14 & \text { Quantity Produced } & & & \text { Hours Used } \\\hline 15 & \text { Fabrication } & & & \\\hline 16 & \text { Finishing } & & & \\\hline 17 & & & & \\\hline 18 & & & & \text { Excess Lava } \\\hline 19 & \text { Market Mixture } & & & \\\hline 20 & & & & \\\hline 21 & && & \text { Total Profit } \\\hline 22 & \text { Profit Contribution } & & & \\\hline\end{array}

-Which of the following constraints Solver uses?

A) $B$14:$C$14 = integer
B) $D$15 > = $D$6
C) $D$16 > = $D$7
D) $D$19 < = 0
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
20
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-Which of the following cells is set as the objective cell in Solver?

A) $G$12
B) $F$14
C) $G$14
D) $B$12
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
21
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-Which of the following constraints is used in Solver?

A) $F$16:$F$19 >= $F$6:$F$9
B) $B$20:$E$20 < $B$10:$E$10
C) $B$20:$E$20 = binary
D) $F$16:$F$19 <= $F$6:$F$9
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
22
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the amount of cash used for Project 5?

A) $ 65,000
B) $ 117,000
C) $ 13,000
D) $ 110,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
23
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the total cost incurred by the company?

A) $ 8,345.00
B) $ 10,756.80
C) $ 7,289.62
D) $ 9,582.75
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
24
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total cost incurred?

A) $ 27,297
B) $ 35,233
C) $ 42,675
D) $ 47,864
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
25
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total amount shipped by the Detroit plant to the distribution centers?

A) 750
B) 1,000
C) 1,400
D) 1,300
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
26
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total amount shipped by the Atlanta plant to the distribution centers?

A) 600
B) 1,000
C) 1,250
D) 1,300
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
27
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the net production at the end of the second quarter?

A) 75
B) 200
C) 450
D) 600
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
28
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the net production at the end of the third quarter?

A) 75
B) 200
C) 450
D) 600
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
29
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the net production at the end of the first quarter?

A) 75
B) 200
C) 450
D) 600
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
30
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the inventory at the end of the first quarter?

A) 725
B) 525
C) 50
D) 75
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
31
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-In which of the following plants is the total amount shipped to the distribution centers equal to zero?

A) Dallas
B) Atlanta
C) Detroit
D) Baltimore
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
32
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the amount of personnel used for Project 2?

A) 3
B) 4
C) 6
D) 11
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
33
Formulate and solve optimization models with binary variables and logical constraints. LO2: Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for a plant location model:  A  B  C  D  E  F 1 Plant Location  Model 23 Data 4 Distribution Center 5 Plant  Houston  San Jose  Jacksonville  Memphis  Capacity 6 Dallas $11.80$16.48$12.35$18.561,3007 Atlanta $8.54$14.65$9.58$18.257508 Detroit $12.89$10.78$7.85$10.281,4009 Baltimore $14.36$18.95$14.61$6.641,30010 Demand 3504508001,7001112 Model 1314 Amount Shipped  Distribution Center 15 Plant  Houston  San Jose  Jack sonville  Memphis  Total Shipped 16 Dallas 17 Atlanta 18 Detroit 19 Baltimore 20 Supply 2122 Total Cost 23$0.00\begin{array}{|l|l|l|l|l|l|l|}\hline &{\text { A }} & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } \\\hline 1 & \begin{array}{l}\text { Plant Location } \\\text { Model }\end{array} & & & & & \\\hline 2 & & & & & & \\\hline 3 & \text { Data } & & & & & \\\hline4&&&\text { Distribution Center }\\\hline 5 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jacksonville } & \text { Memphis } & \text { Capacity } \\\hline 6 & \text { Dallas } & \$ 11.80 & \$ 16.48 & \$ 12.35 & \$ 18.56 & 1,300 \\\hline 7 & \text { Atlanta } & \$ 8.54 & \$ 14.65 & \$ 9.58 & \$ 18.25 & 750 \\\hline 8 & \text { Detroit } & \$ 12.89 & \$ 10.78 & \$ 7.85 & \$ 10.28 & 1,400 \\\hline 9 & \text { Baltimore } & \$ 14.36 & \$ 18.95 & \$ 14.61 & \$ 6.64 & 1,300 \\\hline 10 & \text { Demand } & 350 & 450 & 800 & 1,700 & \\\hline 11 & \\\hline 12 & \text { Model } \\\hline 13 & \\\hline 14 & \text { Amount Shipped }&&\text { Distribution Center } \\\hline 15 & \text { Plant } & \text { Houston } & \text { San Jose } & \text { Jack sonville } & \text { Memphis } & \text { Total Shipped } \\\hline 16 & \text { Dallas } & & & & & \\\hline 17 & \text { Atlanta } \\\hline 18 & \text { Detroit } \\\hline 19 & \text { Baltimore } \\\hline 20 & \text { Supply } \\\hline 21 & \\\hline 22 & \text { Total Cost } \\\hline 23 & \$ 0.00 \\\hline\end{array}

-What is the total amount shipped by the Baltimore plant to the distribution centers?

A) 750
B) 1,000
C) 1,250
D) 1,300
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
34
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-What is the binary constraint at the end of the third quarter?

A) 75
B) 200
C) 450
D) 0
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
35
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the total return obtained from all five projects?

A) $ 860,000
B) $ 550,000
C) $ 700,000
D) $ 395,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
36
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the return obtained from Project 3?

A) $ 200,000
B) $ 125,000
C) $ 275,000
D) $ 225,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
37
Use a modern software tool to perform statistical calculations.
Use the table below to answer the following question(s) using the standard Solver. Below is the spreadsheet for Memphis Designs fixed cost model: ABCD1 Memphis Design Fixed Cost Model 23 Data 45 Cost  Quarter 1  Quarter 2  Quarter 3 6 Production $10.00$15.00$13.507 Inventory $1.70$1.70$1.708 Demand 200450759 Fixed Cost $75.00$75.00$75.001011 Model 1213 Quarter 1  Quarter 2  Quarter 3 14 Production 15 Inventory 16 Binary 1718 Binary constraints 19 Net Production 2021 Cost 22 Total \begin{array}{|l|c|c|c|c|}\hline & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} \\\hline 1 &{\text { Memphis Design Fixed Cost Model }} & & \\\hline 2 & & & & \\\hline 3 & \text { Data } & \\\hline 4 & & \\\hline 5 & \text { Cost } & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 6 & \text { Production } & \$ 10.00 & \$ 15.00 & \$ 13.50 \\\hline 7 & \text { Inventory } & \$ 1.70 & \$ 1.70 & \$ 1.70 \\\hline 8 & \text { Demand } & 200 & 450 & 75 \\\hline 9 & \text { Fixed Cost } & \$ 75.00 & \$ 75.00 & \$ 75.00 \\\hline 10 & \\\hline 11 & \text { Model } \\\hline 12 & \\\hline 13 & & \text { Quarter 1 } & \text { Quarter 2 } & \text { Quarter 3 } \\\hline 14 & \text { Production } & & & \\\hline 15 & \text { Inventory } \\\hline 16 & \text { Binary } \\\hline 17 & \\\hline 18 & \text { Binary constraints } \\\hline 19 & \text { Net Production } \\\hline 20 & & \\\hline 21 & & \text { Cost } \\\hline 22 & \text { Total } & \\\hline\end{array}

-Which of the following constraints is used in Solver?

A) $B$14:$D$14 > = $B$18:$D$18
B) $B$16:$D$16 = binary
C) $B$19:$D$19 < = $B$8:$D$8
D) $B$15:$D$15 = binary
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
38
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the total amount of cash used for all five projects?

A) $ 175,000
B) $ 163,000
C) $ 215,000
D) $ 260,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
39
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the return obtained from Project 5?

A) $ 200,000
B) $ 125,000
C) $ 275,000
D) $ 225,000
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
40
Formulate and solve optimization models with binary variables and logical constraints.
Use the table below to answer the following question(s) by invoking the binary constraints on the variables using the standard Solver.
Below is the spreadsheet for a project selection model:  A  B  C  D  E  F  G  Project Selection 1 Model 23 Data 4 Available  Project 1  Project 2  Project 3  Project 4  Project 5  Resources 5 Expected Return (NPV)$160,000$200,000$125,000$150,000$225,0006 Cash  requirements $45,000$70,000$28,000$52,000$65,000$175,0007 Personnel  requirements 742641089 Model 1011 Project selection  decisions 12 Cash Used 13 Personnel Used 14 Return \begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } \\\hline & \text { Project Selection } & & & & & & \\1 & \text { Model } & & & & & & \\\hline 2 & & & & & & & \\\hline 3 & \text { Data } & & & & & & \\\hline 4 & & & & & & & \text { Available } \\ & & \text { Project 1 } & \text { Project 2 } & \text { Project 3 } & \text { Project 4 } & \text { Project 5 } & \text { Resources } \\\hline 5 & \begin{array}{l}\text { Expected Return } \\(\mathrm{NPV})\end{array} & \$ 160,000 & \$ 200,000 & \$ 125,000 & \$ 150,000 & \$ 225,000 \\\hline 6 & \begin{array}{l}\text { Cash } \\\text { requirements }\end{array} & \$ 45,000 & \$ 70,000 & \$ 28,000 & \$ 52,000 & \$ 65,000 &\$175,000\\\hline 7 & \begin{array}{l}\text { Personnel } \\\text { requirements }\end{array} & 7 & 4 & 2 & 6 & 4 & 10 \\\hline 8 & & & & & & & \\\hline 9 & \text { Model } \\\hline 10 & \\\hline 11 & \begin{array}{l}\text { Project selection } \\\text { decisions }\end{array} \\\hline 12 & \text { Cash Used } \\\hline 13 & \text { Personnel Used } \\\hline 14 & \text { Return } \\\hline\end{array}

-What is the total amount of personnel used for all five projects?

A) 23
B) 17
C) 10
D) 4
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
41
To invoke the binary constraints on the variables, the option bin is chosen from the dropdown box in the Add Constraint dialog.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
42
Explain the method of solving models with general integer variables.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
43
What is the purpose of a heat map?
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
44
What is the importance of binary variables in integer optimization models?
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
45
If the Integer Tolerance is set to 0.01, the Solver will stop if it finds an integer solution that is within 10% of the optimal solution.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
46
Mathematically, a binary variable x can be represented as x > 2 and integer.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
47
Decision variables that are forced to be integers are called general integer variables.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
48
What is the importance of Integer Tolerance in Solver?
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
49
Solver can generate a Sensitivity report for integer models.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
50
Explain the implementation of a project-selection model.
Unlock Deck
Unlock for access to all 50 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 50 flashcards in this deck.