Deck 14: Introduction to Multiple Regression

Full screen (f)
exit full mode
Question
In a multiple regression model, which of the following is correct regarding the value of the adjusted r²?

A) It can be negative.
B) It has to be positive.
C) It has to be larger than the coefficient of multiple determination.
D) It can be larger than 1.
Use Space or
up arrow
down arrow
to flip the card.
Question
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, for these data, what is the estimated coefficient for the variable representing scores on the aptitude test, b??

A) 0.998
B) 3.103
C) 4.698
D) 21.293
Question
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, for these data, what is the estimated coefficient for the variable representing years an employee has been with the company, b??

A) 0.998
B) 3.103
C) 4.698
D) 21.293
Question
The coefficient of multiple determination r²Y.₁₂

A) measures the variation around the predicted regression equation.
B) measures the proportion of variation in Y that is explained by X₁ and X₂.
C) measures the proportion of variation in Y that is explained by X₁ holding X₂ constant.
D) will have the same sign as b₁.
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, when the economist used a simple linear regression model with consumption as the dependent variable and GDP as the independent variable, he obtained an r² value of 0.971. What additional percentage of the total variation of consumption has been explained by including aggregate prices in the multiple regression?

A) 98.2
B) 11.1
C) 2.8
D) 1.1
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, what is the estimated mean consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion
B) $2.89 billion
C) $4.75 billion
D) $9.45 billion
Question
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, for these data, what is the value for the regression constant, b??

A) 0.616
B) 1.054
C) 6.932
D) 9.103
Question
In a multiple regression problem involving two independent variables, if b₁ is computed to be +2.0, it means that

A) the relationship between X₁ and Y is significant.
B) the estimated mean of Y increases by 2 units for each increase of 1 unit of X₁, holding X₂ constant.
C) the estimated mean of Y increases by 2 units for each increase of 1 unit of X₁, without regard to X₂.
D) the estimated mean of Y is 2 when X₁ equals zero.
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, the p-value for GDP is

A) 0.05.
B) 0.01.
C) 0.001.
D) None of the above.
Question
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, for these data, what is the value for the regression constant, b??

A) 0.998
B) 3.103
C) 4.698
D) 21.293
Question
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, if an employee who had been with the company 5 years scored a 9 on the aptitude test, what would his estimated expected sales be?

A) 79.09
B) 60.88
C) 55.62
D) 17.98
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, the p-value for the aggregated price index is

A) 0.05.
B) 0.01.
C) 0.001.
D) None of the above.
Question
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, for these data, what is the estimated coefficient for performance rating, b??

A) 0.616
B) 1.054
C) 6.932
D) 9.103
Question
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, for these data, what is the estimated coefficient for the number of economics courses taken, b??

A) 0.616
B) 1.054
C) 6.932
D) 9.103
Question
In a multiple regression model, the value of the coefficient of multiple determination

A) has to fall between -1 and +1.
B) has to fall between 0 and +1.
C) has to fall between -1 and 0.
D) can fall between any pair of real numbers.
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, the p-value for the regression model as a whole is

A) 0.05.
B) 0.01.
C) 0.001.
D) None of the above.
Question
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, suppose an employee had never taken an economics course and managed to score a 5 on his performance rating. What is his estimated expected wage rate?

A) 10.90
B) 12.20
C) 17.23
D) 25.11
Question
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-The variation attributable to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by

A) regression sum of squares.
B) error sum of squares.
C) total sum of squares.
D) regression mean squares.
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, what is the predicted consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion
B) $2.89 billion
C) $4.75 billion
D) $9.45 billion
Question
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, an employee who took 12 economics courses scores 10 on the performance rating. What is her estimated expected wage rate?

A) 10.90
B) 12.20
C) 24.87
D) 25.70
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what is the predicted house size (in hundreds of square feet)for an individual earning an annual income of $40,000, having a family size of 4, and going to school a total of 13 years?

A) 11.43
B) 15.15
C) 24.88
D) 53.87
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, one economy in the sample had an aggregate consumption level of $3 billion, a GDP of $3.5 billion, and an aggregate price level of 125. What is the residual for this data point?

A) $2.52 billion
B) $0.48 billion
C) -$1.33 billion
D) -$2.52 billion
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the following values for the level of significance is the smallest for which every explanatory variable is significant individually?

A) 0.01
B) 0.025
C) 0.05
D) 0.15
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what minimum annual income would an individual with a family size of 4 and 16 years of education need to attain a predicted 10,000 square foot home (House = 100)?

A) $44.14 thousand
B) $56.75 thousand
C) $178.33 thousand
D) $211.85 thousand
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test for the significance of the coefficient on aggregate price index, the p-value is

A) 0.0001.
B) 0.8330.
C) 0.8837.
D) 0.9999.
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what fraction of the variability in house size is explained by income, size of family, and education?

A) 27.0%
B) 33.4%
C) 74.8%
D) 86.5%
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, what is the estimated mean consumption level for an economy with GDP equal to $2 billion and an aggregate price index of 90?

A) $1.39 billion
B) $2.89 billion
C) $4.75 billion
D) $9.45 billion
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what minimum annual income would an individual with a family size of 9 and 10 years of education need to attain a predicted 5,000 square foot home (House = 50)?

A) $44.14 thousand
B) $56.75 thousand
C) $178.33 thousand
D) $211.85 thousand
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test whether gross domestic product has a positive impact on consumption, the p-value is

A) 0.00005.
B) 0.0001.
C) 0.9999.
D) 0.99995.
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test whether aggregate price index has a positive impact on consumption, the p-value is

A) 0.0001.
B) 0.4165.
C) 0.5835.
D) 0.8330.
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, one individual in the sample had an annual income of $40,000, a family size of 1, and an education of 8 years. This individual owned a home with an area of 1,000 square feet (House = 10.00). What is the residual (in hundreds of square feet)for this data point?

A) -6.99
B) -5.35
C) 5.40
D) 16.99
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the independent variables in the model are significant at the 5% level?

A) Income, Size, School
B) Income, Size
C) Size, School
D) Income, School
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the following values for the level of significance is the smallest for which at least two explanatory variables are significant individually?

A) 0.01
B) 0.025
C) 0.05
D) 0.15
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, when the builder used a simple linear regression model with house size (House)as the dependent variable and education (School)as the independent variable, he obtained an r² value of 23.0%. What additional percentage of the total variation in house size has been explained by including family size and income in the multiple regression?

A) 2.8%
B) 51.8%
C) 72.6%
D) 74.8%
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test for the significance of the coefficient on aggregate price index, the value of the relevant t-statistic is

A) 2.365.
B) 0.143.
C) -0.219.
D) -1.960.
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the following values for the level of significance is the smallest for which the regression model as a whole is significant?

A) 0.0005
B) 0.001
C) 0.01
D) 0.05
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, one individual in the sample had an annual income of $100,000, a family size of 10, and an education of 16 years. This individual owned a home with an area of 7,000 square feet (House = 70.00). What is the residual (in hundreds of square feet)for this data point?

A) 7.40
B) 2.52
C) -2.52
D) -5.40
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, one economy in the sample had an aggregate consumption level of $4 billion, a GDP of $6 billion, and an aggregate price level of 200. What is the residual for this data point?

A) $4.39 billion
B) $0.39 billion
C) -$0.39 billion
D) -$1.33 billion
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test whether aggregate price index has a negative impact on consumption, the p-value is

A) 0.0001.
B) 0.4165.
C) 0.8330.
D) 0.8837.
Question
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test for the significance of the coefficient on gross domestic product, the p-value is

A) 0.0001.
B) 0.8330.
C) 0.8837.
D) 0.9999.
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, which of the following values for ? is the smallest for which the regression model as a whole is significant?

A) 0.00005
B) 0.001
C) 0.01
D) 0.05
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what are the predicted sales (in millions of dollars)for a company spending $500 million on capital and $200 million on wages?

A) 15,800.00
B) 16,520.07
C) 17,277.49
D) 20,455.98
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, suppose the builder wants to test whether the coefficient on Income is significantly different from 0. What is the value of the relevant t-statistic?

A) 5.286
B) 5.195
C) 3.945
D) -1.509
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what is the value of the calculated F test statistic that is missing from the output for testing whether the whole regression model is significant?

A) 0.0001
B) 0.0299
C) 0.726
D) 45.5340
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for Capital?

A) 0.01
B) 0.025
C) 0.05
D) None of the above
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Capital has a negative influence on corporate sales?

A) 0.05
B) 0.2743
C) 0.5485
D) 0.7258
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Wages have a positive impact on corporate sales?

A) 0.01
B) 0.05
C) 0.0001
D) 0.00005
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, when the microeconomist used a simple linear regression model with sales as the dependent variable and wages as the independent variable, she obtained an r² value of 0.601. What additional percentage of the total variation of sales has been explained by including capital spending in the multiple regression?

A) 60.1%
B) 31.1%
C) 22.9%
D) 8.8%
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what are the residual degrees of freedom that are missing from the output?

A) 3
B) 46
C) 49
D) 50
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Wages have a negative impact on corporate sales?

A) 0.05
B) 0.0001
C) 0.00005
D) 0.99995
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, the observed value of the F-statistic is missing from the printout. What are the degrees of freedom for this F-statistic?

A) 46 for the numerator, 3 for the denominator
B) 3 for the numerator, 49 for the denominator
C) 46 for the numerator, 49 for the denominator
D) 3 for the numerator, 46 for the denominator
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, suppose the builder wants to test whether the coefficient on School is significantly different from 0. What is the value of the relevant t-statistic?

A) 5.286
B) 5.195
C) 3.945
D) -1.509
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for Wages?

A) 0.01
B) 0.05
C) 0.0001
D) None of the above
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what are the regression degrees of freedom that are missing from the output?

A) 3
B) 46
C) 49
D) 50
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, at the 0.01 level of significance, what conclusion should the builder draw regarding the inclusion of School in the regression model?

A) School is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B) School is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C) School is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D) School is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Capital has a positive influence on corporate sales?

A) 0.025
B) 0.05
C) 0.2743
D) 0.5485
Question
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, at the 0.01 level of significance, what conclusion should the builder reach regarding the inclusion of Income in the regression model?

A) Income is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B) Income is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C) Income is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D) Income is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what are the predicted sales (in millions of dollars)for a company spending $100 million on capital and $100 million on wages?

A) 15,800.00
B) 16,520.07
C) 17,277.49
D) 20,455.98
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, which of the independent variables in the model are significant at the 5% level?

A) Capital, Wages
B) Capital
C) Wages
D) None of the above
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what fraction of the variability in sales is explained by spending on capital and wages?

A) 27.0%
B) 50.9%
C) 68.9%
D) 83.0%
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, the observed value of the F-statistic is given on the printout as 25.432. What are the degrees of freedom for this F-statistic?

A) 25 for the numerator, 2 for the denominator
B) 2 for the numerator, 23 for the denominator
C) 23 for the numerator, 25 for the denominator
D) 2 for the numerator, 25 for the denominator
Question
When an explanatory variable is dropped from a multiple regression model, the adjusted r² can increase.
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, suppose the microeconomist wants to test whether the coefficient on Capital is significantly different from 0. What is the value of the relevant t-statistic?

A) 0.609
B) 2.617
C) 4.804
D) 25.432
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, at the 0.01 level of significance, what conclusion should the microeconomist reach regarding the inclusion of Capital in the regression model?

A) Capital is significant in explaining corporate sales and should be included in the model because its p-value is less than 0.01.
B) Capital is significant in explaining corporate sales and should be included in the model because its p-value is more than 0.01.
C) Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is less than 0.01.
D) Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is more than 0.01.
Question
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6 and allowing for a 1% probability of committing a type I error, what is the decision and conclusion for the test H?: ?? = ?? = ?? = ?? = 0 vs. H?: At least one ?? ? 0, j = 1,2,..., 4 using Model 1?

A) Do not reject H? and conclude that the 4 independent variables have significant individual linear effects on heating costs.
B) Reject H? and conclude that the 4 independent variables taken as a group have significant linear effects on heating costs.
C) Do not reject H? and conclude that the 4 independent variables taken as a group do not have significant linear effects on heating costs.
D) Reject H? and conclude that the 4 independent variables taken as a group do not have significant linear effects on heating costs.
Question
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, the estimated value of the partial regression parameter ?? in Model 1 means that

A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees.
B) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51.
C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by $4.51.
D) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by 4.51%.
Question
When an additional explanatory variable is introduced into a multiple regression model, the coefficient of multiple determination will never decrease.
Question
The interpretation of the slope is different in a multiple linear regression model as compared to a simple linear regression model.
Question
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what is the 90% confidence interval for the expected change in heating costs as a result of a 1 degree Fahrenheit change in the daily minimum outside temperature using Model 1?

A) [-6.58, -3.65]
B) [-6.24, -2.78]
C) [-5.94, -3.08]
D) [-2.37, 15.12]
Question
The slopes in a multiple regression model are called net regression coefficients.
Question
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what is the value of the partial F test statistic for H?: ?? = ?? = 0 vs. H?: At least one ?? ? 0, j = 3, 4?

A) 0.820
B) 1.219
C) 1.382
D) 15.787
Question
When an explanatory variable is dropped from a multiple regression model, the coefficient of multiple determination can increase.
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, one company in the sample had sales of $20 billion (Sales = 20,000). This company spent $300 million on capital and $700 million on wages. What is the residual (in millions of dollars)for this data point?

A) 874.55
B) 622.87
C) -790.69
D) -983.56
Question
In calculating the standard error of the estimate, SYX = MSE\sqrt { \mathrm { MSE } } , there are n - k - 1 degrees of freedom, where n is the sample size and k represents the number of independent variables in the model.
Question
The coefficient of multiple determination r²Y.₁₂ measures the proportion of variation in Y that is explained by X₁ and X₂.
Question
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what are the degrees of freedom of the partial F test for H?: = ?? = ?? = 0 vs. H?: At least one ?? ? 0, j = 3, 4?

A) 2 numerator degrees of freedom and 15 denominator degrees of freedom
B) 15 numerator degrees of freedom and 2 denominator degrees of freedom
C) 2 numerator degrees of freedom and 17 denominator degrees of freedom
D) 17 numerator degrees of freedom and 2 denominator degrees of freedom
Question
When an additional explanatory variable is introduced into a multiple regression model, the adjusted r² can never decrease.
Question
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what can we say about Model 1?

A) The model explains 77.7% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 75.1% of the sample variability of heating costs.
B) The model explains 75.1% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 77.7% of the sample variability of heating costs.
C) The model explains 80.8% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 75.7% of the sample variability of heating costs.
D) The model explains 75.7% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 80.8% of the sample variability of heating costs.
Question
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what is your decision and conclusion for the test H?: ?? = 0 vs H?: ?? < 0 at the ? = 0.01 level of significance using Model 1?

A) Do not reject H? and conclude that the amount of insulation has a linear effect on heating cots.
B) Reject H? and conclude that the amount of insulation does not have a linear effect on heating costs.
C) Reject H? and conclude that the amount of insulation has a negative linear effect on heating costs.
D) Do not reject H? and conclude that the amount of insulation has a negative linear effect on heating costs.
Question
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, one company in the sample had sales of $21.439 billion (Sales = 21,439). This company spent $300 million on capital and $700 million on wages. What is the residual (in millions of dollars)for this data point?

A) 790.69
B) 648.31
C) -648.31
D) -790.69
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/355
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Introduction to Multiple Regression
1
In a multiple regression model, which of the following is correct regarding the value of the adjusted r²?

A) It can be negative.
B) It has to be positive.
C) It has to be larger than the coefficient of multiple determination.
D) It can be larger than 1.
It can be negative.
2
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, for these data, what is the estimated coefficient for the variable representing scores on the aptitude test, b??

A) 0.998
B) 3.103
C) 4.698
D) 21.293
4.698
3
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, for these data, what is the estimated coefficient for the variable representing years an employee has been with the company, b??

A) 0.998
B) 3.103
C) 4.698
D) 21.293
3.103
4
The coefficient of multiple determination r²Y.₁₂

A) measures the variation around the predicted regression equation.
B) measures the proportion of variation in Y that is explained by X₁ and X₂.
C) measures the proportion of variation in Y that is explained by X₁ holding X₂ constant.
D) will have the same sign as b₁.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
5
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, when the economist used a simple linear regression model with consumption as the dependent variable and GDP as the independent variable, he obtained an r² value of 0.971. What additional percentage of the total variation of consumption has been explained by including aggregate prices in the multiple regression?

A) 98.2
B) 11.1
C) 2.8
D) 1.1
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
6
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, what is the estimated mean consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion
B) $2.89 billion
C) $4.75 billion
D) $9.45 billion
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
7
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, for these data, what is the value for the regression constant, b??

A) 0.616
B) 1.054
C) 6.932
D) 9.103
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
8
In a multiple regression problem involving two independent variables, if b₁ is computed to be +2.0, it means that

A) the relationship between X₁ and Y is significant.
B) the estimated mean of Y increases by 2 units for each increase of 1 unit of X₁, holding X₂ constant.
C) the estimated mean of Y increases by 2 units for each increase of 1 unit of X₁, without regard to X₂.
D) the estimated mean of Y is 2 when X₁ equals zero.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
9
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, the p-value for GDP is

A) 0.05.
B) 0.01.
C) 0.001.
D) None of the above.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
10
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, for these data, what is the value for the regression constant, b??

A) 0.998
B) 3.103
C) 4.698
D) 21.293
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
11
TABLE 14-1
A manager of a product sales group believes the number of sales made by an employee (Y) depends on how many years that employee has been with the company (X?) and how he/she scored on a business aptitude test (X?). A random sample of 8 employees provides the following:  Employee YX1X21100107290310380894705456058650757401483011\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y } & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 100 & 10 & 7 \\2 & 90 & 3 & 10 \\3 & 80 & 8 & 9 \\4 & 70 & 5 & 4 \\5 & 60 & 5 & 8 \\6 & 50 & 7 & 5 \\7 & 40 & 1 & 4 \\8 & 30 & 1 & 1\end{array}

-Referring to Table 14-1, if an employee who had been with the company 5 years scored a 9 on the aptitude test, what would his estimated expected sales be?

A) 79.09
B) 60.88
C) 55.62
D) 17.98
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
12
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, the p-value for the aggregated price index is

A) 0.05.
B) 0.01.
C) 0.001.
D) None of the above.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
13
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, for these data, what is the estimated coefficient for performance rating, b??

A) 0.616
B) 1.054
C) 6.932
D) 9.103
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
14
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, for these data, what is the estimated coefficient for the number of economics courses taken, b??

A) 0.616
B) 1.054
C) 6.932
D) 9.103
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
15
In a multiple regression model, the value of the coefficient of multiple determination

A) has to fall between -1 and +1.
B) has to fall between 0 and +1.
C) has to fall between -1 and 0.
D) can fall between any pair of real numbers.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
16
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, the p-value for the regression model as a whole is

A) 0.05.
B) 0.01.
C) 0.001.
D) None of the above.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
17
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, suppose an employee had never taken an economics course and managed to score a 5 on his performance rating. What is his estimated expected wage rate?

A) 10.90
B) 12.20
C) 17.23
D) 25.11
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
18
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-The variation attributable to factors other than the relationship between the independent variables and the explained variable in a regression analysis is represented by

A) regression sum of squares.
B) error sum of squares.
C) total sum of squares.
D) regression mean squares.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
19
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, what is the predicted consumption level for an economy with GDP equal to $4 billion and an aggregate price index of 150?

A) $1.39 billion
B) $2.89 billion
C) $4.75 billion
D) $9.45 billion
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
20
TABLE 14-2
A professor of industrial relations believes that an individual's wage rate at a factory (Y) depends on his performance rating (X?) and the number of economics courses the employee successfully completed in college (X?). The professor randomly selects 6 workers and collects the following information:
 Employee Y($)X1X211030212153158141758520712625109\begin{array}{cccccc}\underline { \text { Employee } } &\underline { Y (\$)} & \underline { X } _ { 1 } & \underline { X _ { 2 } }\\1 & 10 & 3 & 0 \\2 & 12 & 1 & 5 \\3 & 15 & 8 & 1 \\4 & 17 & 5 & 8 \\5 & 20 & 7 & 12 \\6 & 25 & 10 & 9\end{array}

-Referring to Table 14-2, an employee who took 12 economics courses scores 10 on the performance rating. What is her estimated expected wage rate?

A) 10.90
B) 12.20
C) 24.87
D) 25.70
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
21
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what is the predicted house size (in hundreds of square feet)for an individual earning an annual income of $40,000, having a family size of 4, and going to school a total of 13 years?

A) 11.43
B) 15.15
C) 24.88
D) 53.87
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
22
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, one economy in the sample had an aggregate consumption level of $3 billion, a GDP of $3.5 billion, and an aggregate price level of 125. What is the residual for this data point?

A) $2.52 billion
B) $0.48 billion
C) -$1.33 billion
D) -$2.52 billion
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
23
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the following values for the level of significance is the smallest for which every explanatory variable is significant individually?

A) 0.01
B) 0.025
C) 0.05
D) 0.15
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
24
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what minimum annual income would an individual with a family size of 4 and 16 years of education need to attain a predicted 10,000 square foot home (House = 100)?

A) $44.14 thousand
B) $56.75 thousand
C) $178.33 thousand
D) $211.85 thousand
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
25
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test for the significance of the coefficient on aggregate price index, the p-value is

A) 0.0001.
B) 0.8330.
C) 0.8837.
D) 0.9999.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
26
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what fraction of the variability in house size is explained by income, size of family, and education?

A) 27.0%
B) 33.4%
C) 74.8%
D) 86.5%
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
27
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, what is the estimated mean consumption level for an economy with GDP equal to $2 billion and an aggregate price index of 90?

A) $1.39 billion
B) $2.89 billion
C) $4.75 billion
D) $9.45 billion
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
28
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what minimum annual income would an individual with a family size of 9 and 10 years of education need to attain a predicted 5,000 square foot home (House = 50)?

A) $44.14 thousand
B) $56.75 thousand
C) $178.33 thousand
D) $211.85 thousand
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
29
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test whether gross domestic product has a positive impact on consumption, the p-value is

A) 0.00005.
B) 0.0001.
C) 0.9999.
D) 0.99995.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
30
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test whether aggregate price index has a positive impact on consumption, the p-value is

A) 0.0001.
B) 0.4165.
C) 0.5835.
D) 0.8330.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
31
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, one individual in the sample had an annual income of $40,000, a family size of 1, and an education of 8 years. This individual owned a home with an area of 1,000 square feet (House = 10.00). What is the residual (in hundreds of square feet)for this data point?

A) -6.99
B) -5.35
C) 5.40
D) 16.99
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
32
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the independent variables in the model are significant at the 5% level?

A) Income, Size, School
B) Income, Size
C) Size, School
D) Income, School
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
33
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the following values for the level of significance is the smallest for which at least two explanatory variables are significant individually?

A) 0.01
B) 0.025
C) 0.05
D) 0.15
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
34
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, when the builder used a simple linear regression model with house size (House)as the dependent variable and education (School)as the independent variable, he obtained an r² value of 23.0%. What additional percentage of the total variation in house size has been explained by including family size and income in the multiple regression?

A) 2.8%
B) 51.8%
C) 72.6%
D) 74.8%
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
35
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test for the significance of the coefficient on aggregate price index, the value of the relevant t-statistic is

A) 2.365.
B) 0.143.
C) -0.219.
D) -1.960.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
36
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, which of the following values for the level of significance is the smallest for which the regression model as a whole is significant?

A) 0.0005
B) 0.001
C) 0.01
D) 0.05
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
37
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, one individual in the sample had an annual income of $100,000, a family size of 10, and an education of 16 years. This individual owned a home with an area of 7,000 square feet (House = 70.00). What is the residual (in hundreds of square feet)for this data point?

A) 7.40
B) 2.52
C) -2.52
D) -5.40
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
38
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, one economy in the sample had an aggregate consumption level of $4 billion, a GDP of $6 billion, and an aggregate price level of 200. What is the residual for this data point?

A) $4.39 billion
B) $0.39 billion
C) -$0.39 billion
D) -$1.33 billion
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
39
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test whether aggregate price index has a negative impact on consumption, the p-value is

A) 0.0001.
B) 0.4165.
C) 0.8330.
D) 0.8837.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
40
TABLE 14-3
An economist is interested to see how consumption for an economy (in $ billions) is influenced by gross domestic product ($ billions) and aggregate price (consumer price index). The Microsoft Excel output of this regression is partially reproduced below.
SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.991 R Square 0.982 Adjusted R Square 0.976 Standard Error 0.299 Observations 10\begin{array} { l l } \text { Multiple R } & 0.991 \\ \text { R Square } & 0.982 \\ \text { Adjusted R Square } & 0.976 \\ \text { Standard Error } & 0.299 \\ \text { Observations } & 10 \end{array}
ANOVA
df SS  MS F Signif F Regression 233.416316.7082186.3250.0001 Residual 70.62770.0897 Total 934.0440\begin{array}{llrrrr} & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\\text { Regression } & 2 & 33.4163 & 16.7082 & 186.325 & 0.0001 \\\text { Residual } & 7 & 0.6277 & 0.0897 & & \\\text { Total } & 9 & 34.0440 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 0.08610.56740.1520.8837 GDP 0.76540.057413.3400.0001 Price 0.00060.00280.2190.8330\begin{array} { l c l r l } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 0.0861 & 0.5674 & - 0.152 & 0.8837 \\ \text { GDP } & 0.7654 & 0.0574 & 13.340 & 0.0001 \\ \text { Price } & - 0.0006 & 0.0028 & - 0.219 & 0.8330 \end{array}

-Referring to Table 14-3, to test for the significance of the coefficient on gross domestic product, the p-value is

A) 0.0001.
B) 0.8330.
C) 0.8837.
D) 0.9999.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
41
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, which of the following values for ? is the smallest for which the regression model as a whole is significant?

A) 0.00005
B) 0.001
C) 0.01
D) 0.05
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
42
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what are the predicted sales (in millions of dollars)for a company spending $500 million on capital and $200 million on wages?

A) 15,800.00
B) 16,520.07
C) 17,277.49
D) 20,455.98
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
43
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, suppose the builder wants to test whether the coefficient on Income is significantly different from 0. What is the value of the relevant t-statistic?

A) 5.286
B) 5.195
C) 3.945
D) -1.509
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
44
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what is the value of the calculated F test statistic that is missing from the output for testing whether the whole regression model is significant?

A) 0.0001
B) 0.0299
C) 0.726
D) 45.5340
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
45
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for Capital?

A) 0.01
B) 0.025
C) 0.05
D) None of the above
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
46
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Capital has a negative influence on corporate sales?

A) 0.05
B) 0.2743
C) 0.5485
D) 0.7258
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
47
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Wages have a positive impact on corporate sales?

A) 0.01
B) 0.05
C) 0.0001
D) 0.00005
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
48
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, when the microeconomist used a simple linear regression model with sales as the dependent variable and wages as the independent variable, she obtained an r² value of 0.601. What additional percentage of the total variation of sales has been explained by including capital spending in the multiple regression?

A) 60.1%
B) 31.1%
C) 22.9%
D) 8.8%
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
49
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what are the residual degrees of freedom that are missing from the output?

A) 3
B) 46
C) 49
D) 50
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
50
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Wages have a negative impact on corporate sales?

A) 0.05
B) 0.0001
C) 0.00005
D) 0.99995
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
51
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, the observed value of the F-statistic is missing from the printout. What are the degrees of freedom for this F-statistic?

A) 46 for the numerator, 3 for the denominator
B) 3 for the numerator, 49 for the denominator
C) 46 for the numerator, 49 for the denominator
D) 3 for the numerator, 46 for the denominator
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
52
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, suppose the builder wants to test whether the coefficient on School is significantly different from 0. What is the value of the relevant t-statistic?

A) 5.286
B) 5.195
C) 3.945
D) -1.509
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
53
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for Wages?

A) 0.01
B) 0.05
C) 0.0001
D) None of the above
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
54
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, what are the regression degrees of freedom that are missing from the output?

A) 3
B) 46
C) 49
D) 50
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
55
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, at the 0.01 level of significance, what conclusion should the builder draw regarding the inclusion of School in the regression model?

A) School is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B) School is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C) School is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D) School is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
56
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what is the p-value for testing whether Capital has a positive influence on corporate sales?

A) 0.025
B) 0.05
C) 0.2743
D) 0.5485
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
57
TABLE 14-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income), family size (Size), and education of the head of household (School). House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F  Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}
 Coeff  StdError t Stat p-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c c r c } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}

-Referring to Table 14-4, at the 0.01 level of significance, what conclusion should the builder reach regarding the inclusion of Income in the regression model?

A) Income is significant in explaining house size and should be included in the model because its p-value is less than 0.01.
B) Income is significant in explaining house size and should be included in the model because its p-value is more than 0.01.
C) Income is not significant in explaining house size and should not be included in the model because its p-value is less than 0.01.
D) Income is not significant in explaining house size and should not be included in the model because its p-value is more than 0.01.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
58
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what are the predicted sales (in millions of dollars)for a company spending $100 million on capital and $100 million on wages?

A) 15,800.00
B) 16,520.07
C) 17,277.49
D) 20,455.98
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
59
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, which of the independent variables in the model are significant at the 5% level?

A) Capital, Wages
B) Capital
C) Wages
D) None of the above
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
60
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, what fraction of the variability in sales is explained by spending on capital and wages?

A) 27.0%
B) 50.9%
C) 68.9%
D) 83.0%
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
61
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, the observed value of the F-statistic is given on the printout as 25.432. What are the degrees of freedom for this F-statistic?

A) 25 for the numerator, 2 for the denominator
B) 2 for the numerator, 23 for the denominator
C) 23 for the numerator, 25 for the denominator
D) 2 for the numerator, 25 for the denominator
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
62
When an explanatory variable is dropped from a multiple regression model, the adjusted r² can increase.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
63
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, suppose the microeconomist wants to test whether the coefficient on Capital is significantly different from 0. What is the value of the relevant t-statistic?

A) 0.609
B) 2.617
C) 4.804
D) 25.432
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
64
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, at the 0.01 level of significance, what conclusion should the microeconomist reach regarding the inclusion of Capital in the regression model?

A) Capital is significant in explaining corporate sales and should be included in the model because its p-value is less than 0.01.
B) Capital is significant in explaining corporate sales and should be included in the model because its p-value is more than 0.01.
C) Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is less than 0.01.
D) Capital is not significant in explaining corporate sales and should not be included in the model because its p-value is more than 0.01.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
65
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6 and allowing for a 1% probability of committing a type I error, what is the decision and conclusion for the test H?: ?? = ?? = ?? = ?? = 0 vs. H?: At least one ?? ? 0, j = 1,2,..., 4 using Model 1?

A) Do not reject H? and conclude that the 4 independent variables have significant individual linear effects on heating costs.
B) Reject H? and conclude that the 4 independent variables taken as a group have significant linear effects on heating costs.
C) Do not reject H? and conclude that the 4 independent variables taken as a group do not have significant linear effects on heating costs.
D) Reject H? and conclude that the 4 independent variables taken as a group do not have significant linear effects on heating costs.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
66
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, the estimated value of the partial regression parameter ?? in Model 1 means that

A) holding the effect of the other independent variables constant, an estimated expected $1 increase in heating costs is associated with a decrease in the daily minimum outside temperature by 4.51 degrees.
B) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in a decrease in heating costs by $4.51.
C) holding the effect of the other independent variables constant, a 1 degree increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by $4.51.
D) holding the effect of the other independent variables constant, a 1% increase in the daily minimum outside temperature results in an estimated decrease in mean heating costs by 4.51%.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
67
When an additional explanatory variable is introduced into a multiple regression model, the coefficient of multiple determination will never decrease.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
68
The interpretation of the slope is different in a multiple linear regression model as compared to a simple linear regression model.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
69
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what is the 90% confidence interval for the expected change in heating costs as a result of a 1 degree Fahrenheit change in the daily minimum outside temperature using Model 1?

A) [-6.58, -3.65]
B) [-6.24, -2.78]
C) [-5.94, -3.08]
D) [-2.37, 15.12]
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
70
The slopes in a multiple regression model are called net regression coefficients.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
71
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what is the value of the partial F test statistic for H?: ?? = ?? = 0 vs. H?: At least one ?? ? 0, j = 3, 4?

A) 0.820
B) 1.219
C) 1.382
D) 15.787
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
72
When an explanatory variable is dropped from a multiple regression model, the coefficient of multiple determination can increase.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
73
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, one company in the sample had sales of $20 billion (Sales = 20,000). This company spent $300 million on capital and $700 million on wages. What is the residual (in millions of dollars)for this data point?

A) 874.55
B) 622.87
C) -790.69
D) -983.56
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
74
In calculating the standard error of the estimate, SYX = MSE\sqrt { \mathrm { MSE } } , there are n - k - 1 degrees of freedom, where n is the sample size and k represents the number of independent variables in the model.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
75
The coefficient of multiple determination r²Y.₁₂ measures the proportion of variation in Y that is explained by X₁ and X₂.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
76
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what are the degrees of freedom of the partial F test for H?: = ?? = ?? = 0 vs. H?: At least one ?? ? 0, j = 3, 4?

A) 2 numerator degrees of freedom and 15 denominator degrees of freedom
B) 15 numerator degrees of freedom and 2 denominator degrees of freedom
C) 2 numerator degrees of freedom and 17 denominator degrees of freedom
D) 17 numerator degrees of freedom and 2 denominator degrees of freedom
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
77
When an additional explanatory variable is introduced into a multiple regression model, the adjusted r² can never decrease.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
78
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what can we say about Model 1?

A) The model explains 77.7% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 75.1% of the sample variability of heating costs.
B) The model explains 75.1% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 77.7% of the sample variability of heating costs.
C) The model explains 80.8% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 75.7% of the sample variability of heating costs.
D) The model explains 75.7% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 80.8% of the sample variability of heating costs.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
79
TABLE 14-6
One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y). To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X?) the amount of insulation in inches (X?), the number of windows in the house (X?), and the age of the furnace in years (X?). Given below are the Excel outputs of two regression models.
Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{|lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\hline \text { Adjusted R Square } & 0.7568 \\\hline \text { Observations } & 20 \\\hline\end{array}

ANOVA\mathrm{ANOVA}

 df SSMSF Significance F  Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{llrrrrrr}\hline & \text { df } &{S S} & M S & F &{\text { Significance F }} \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intercept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature) 4.50980.81295.54760.00005.93493.0847X2 (Insulation) 14.90295.05082.95050.009923.75736.0485X3 (Windows) 0.21514.86750.04420.96538.31818.7484X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & \text { t Stat } & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intercept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\hline \mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}
Model 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{|lr|}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\hline \text { Adjusted R Square } & 0.7506 \\\hline \text { Observations } & 20 \\\hline\end{array}


 ANOVA \text { ANOVA }
 Significance df SS  MS FF Regression 2162958.227781479.1129.59230.0000 Residual 1746807.52222753.384 Total 19209765.75\begin{array}{|lrrrccc}\hline & & & & & & \text { Significance } \\& d f & \text { SS } & \text { MS } & F & F \\\hline \text { Regression } & 2 & 162958.2277 & 81479.11 & 29.5923 & 0.0000 \\\text { Residual } & & 17 & 46807.5222 & 2753.384 & & \\\hline \text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature) 5.11030.69517.35150.00006.57693.6437X2 (Insulation) 14.71954.88643.01230.007825.02904.4099\begin{array} { | l | r | r | r |r| r| r| } \hline& \text { Coefficients } & { \begin{array} { c } \text { Standard } \\\text { Error }\end{array} } & \ { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm { X } _ { 1 } \text { (Temperature) } & - 5.1103 & 0.6951 & - 7.3515 & 0.0000 & - 6.5769 & - 3.6437 \\\hline \mathrm { X } _ { 2 } \text { (Insulation) } & - 14.7195 & 4.8864 & - 3.0123 & 0.0078 & - 25.0290 & - 4.4099\\\hline\end{array}


-Referring to Table 14-6, what is your decision and conclusion for the test H?: ?? = 0 vs H?: ?? < 0 at the ? = 0.01 level of significance using Model 1?

A) Do not reject H? and conclude that the amount of insulation has a linear effect on heating cots.
B) Reject H? and conclude that the amount of insulation does not have a linear effect on heating costs.
C) Reject H? and conclude that the amount of insulation has a negative linear effect on heating costs.
D) Do not reject H? and conclude that the amount of insulation has a negative linear effect on heating costs.
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
80
TABLE 14-5
A microeconomist wants to determine how corporate sales are influenced by capital and wage spending by companies. She proceeds to randomly select 26 large corporations and record information in millions of dollars. The Microsoft Excel output below shows results of this multiple regression. SUMMARY OUTPUT
 Regression Statistics  Multiple R 0.830 R Square 0.689 Adjusted R Square 0.662 Standard Error 17501.643 Observations 26\begin{array}{l}\text { Regression Statistics }\\\begin{array}{ll}\text { Multiple R } & 0.830 \\\text { R Square } & 0.689 \\\text { Adjusted R Square } & 0.662 \\\text { Standard Error } & 17501.643 \\\text { Observations } & 26\end{array}\end{array}

ANOVA
df SS  MS F Signif F  Regression 215579777040778988852025.4320.0001 Residual 237045072780306307512 Total 2522624849820\begin{array}{lrcccr} & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\\text { Regression } & 2 & 15579777040 & 7789888520 & 25.432 & 0.0001 \\\text { Residual } & 23 & 7045072780 & 306307512 & & \\\text { Total } & 25 & 22624849820 & & &\end{array}


 Coeff  StdError t Stat p-value  Intercept 15800.00006038.29992.6170.0154 Capital 0.12450.20450.6090.5485 Wages 7.07621.47294.8040.0001\begin{array} { l r r r r } & \text { Coeff } & \text { StdError } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 15800.0000 & 6038.2999 & 2.617 & 0.0154 \\ \text { Capital } & 0.1245 & 0.2045 & 0.609 & 0.5485 \\ \text { Wages } & 7.0762 & 1.4729 & 4.804 & 0.0001 \end{array}

-Referring to Table 14-5, one company in the sample had sales of $21.439 billion (Sales = 21,439). This company spent $300 million on capital and $700 million on wages. What is the residual (in millions of dollars)for this data point?

A) 790.69
B) 648.31
C) -648.31
D) -790.69
Unlock Deck
Unlock for access to all 355 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 355 flashcards in this deck.