Deck 8: Power Series

Full screen (f)
exit full mode
Question
Find the interval of convergence and radius of convergence of the power series: k=011+3kxk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 1 + 3 ^ { k } } x ^ { k }

A) R = 1, interval of convergence: (-1, 1)
B) R = 1, interval of convergence: (-3, 3)
C) R = 3, interval of convergence: (-1, 1)
D) R = 3, interval of convergence: (-3, 3)
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the interval of convergence and radius of convergence of the power series: k=011+5kxk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 1 + 5 ^ { k } } x ^ { k }

A) R = 1, interval of convergence: (3, 5)
B) R = 3, interval of convergence: (-3, -1)
C) R = 5, interval of convergence: (-5, 5)
D) R = 5, interval of convergence: (-5, -3)
Question
Find the interval of convergence and radius of convergence of the power series: k=0(k+1)!xk\sum _ { k = 0 } ^ { \infty } ( k + 1 ) ! x ^ { k }

A) R = 1, interval of convergence: (-1, 1)
B) R = 0, series converges only when x = 1
C) R = 0, series converges only when x = 0
D) R = 1, interval of convergence: (0, 2)
Question
Find the interval of convergence and radius of convergence of the power series: k=0(3k)kx2k\sum _ { k = 0 } ^ { \infty } \left( \frac { 3 } { k } \right) ^ { k } x ^ { 2 k }

A) R = 1, interval of convergence: (-1, 1)
B) R = ?, interval of convergence: (-?, ?)
C) R = 1, interval of convergence: (0, 2)
D) R = 3, interval of convergence: (-3, 3)
Question
Find the interval of convergence and radius of convergence of the power series: k=0(3k)kx3k\sum _ { k = 0 } ^ { \infty } \left( \frac { 3 } { k } \right) ^ { k } x ^ { 3 k }

A) R = 1, interval of convergence: (-1, 1)
B) R = ?, interval of convergence: (-?, ?)
C) R = 1, interval of convergence: (0, 2)
D) R = 3, interval of convergence: (-3, 3)
Question
Find the interval of convergence of the power series: k=012k!xk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 2 k ! } x ^ { k }

A) (-1, 1)
B) Converges only when x = 0.
C) (0, 2)
D) (-?, ?)
Question
Find the interval of convergence of the power series: k=0xk(2k)!\sum _ { k = 0 } ^ { \infty } \frac { x ^ { k } } { ( 2 k ) ! }

A) (-1, 1)
B) (-?, ?)
C) (0, 2)
D) Converges only when x = 0
Question
Find the interval of convergence of the power series: k=0(3)kk!xk\sum _ { k = 0 } ^ { \infty } \frac { ( - 3 ) ^ { k } } { k ! } x ^ { k }

A) (-1, 1)
B) (0, 2)
C) (-?, ?)
D) Converges only when x = 0
Question
Find the interval of convergence of the power series: k=0(1)k(3k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 3 k ) ! } x ^ { 2 k }

A) (-1, 1)
B) (0, 2)
C) (-?, ?)
D) ( 0, 1)
Question
Find the interval of convergence of the power series: k=0(1)kk+2xk\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k + 2 } x ^ { k }

A) (-1, 1)
B) (0, 1)
C) [-1, 1]
D) (-1, 1]
Question
Find the interval of convergence of the power series: k=0(1)k3k+1x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 3 k + 1 } x ^ { 2 k }

A) (-1, 1)
B) (0, 1)
C) [-1, 1]
D) (-1, 1]
Question
Find the interval of convergence of the power series: k=0(1)k(2k)!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k + 1 }

A) (-1, 1)
B) (0, 2)
C) (- \infty , \infty )
D) (-1, 1]
Question
Find the interval of convergence of the power series: k=11k(x+3)k\sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } ( x + 3 ) ^ { k }

A) (-2, 2)
B) (-4, -2)
C) [-4, 2]
D) [-4, -2)
Question
Find the interval of convergence of the power series: k=03k+1k3(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 3 k + 1 } { k ^ { 3 } } ( x - 1 ) ^ { k }

A) (0, 2)
B) [0, 2)
C) (0, 2]
D) [0, 2]
Question
Find the interval of convergence of the power series: k=12k2(x+2)k\sum _ { k = 1 } ^ { \infty } \frac { 2 } { k ^ { 2 } } ( x + 2 ) ^ { k }

A) (-3, -1)
B) [-3, -1)
C) [-3, -1]
D) (-3, -1]
Question
Find the interval of convergence of the power series: k=0(1)kk22k(x2)k\sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } \frac { k ^ { 2 } } { 2 ^ { k } } ( x - 2 ) ^ { k }

A) [0, 4)
B) (0, 4)
C) (0, 4]
D) [0, 4]
Question
Find the interval of convergence of the power series: k=1(1)kkk3xk\sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k } \frac { \sqrt { k } } { k ^ { 3 } } x ^ { k }

A) (-1, 1)
B) [-1, 1)
C) (-1, 1]
D) [-1, 1]
Question
Find the interval of convergence of the power series: k=1(1)kkk2(x1)k\sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k } \frac { \sqrt { k } } { k ^ { 2 } } ( x - 1 ) ^ { k }
Question
Find the interval of convergence of the power series: k=0kk!(2x+3)k\sum _ { k = 0 } ^ { \infty } \frac { \sqrt { k } } { k ! } ( 2 x + 3 ) ^ { k }

A) (-1, 1)
B) Converges only when x = 0
C) (-?, ?)
D) (0, 2)
Question
Find the interval of convergence of the power series: k=0kk2(2x+3)k\sum _ { k = 0 } ^ { \infty } \frac { \sqrt { k } } { k ^ { 2 } } ( 2 x + 3 ) ^ { k }

A) (-2, -1)
B) (-2, -1]
C) [-2, -1)
D) [-2, -1]
Question
Find the interval of convergence of the power series: k=0k+12k(2x5)k\sum _ { k = 0 } ^ { \infty } \frac { k + 1 } { 2 ^ { k } } ( 2 x - 5 ) ^ { k }

A) (3/2, 5/2)
B) (3/2, 7/3)
C) (3/2, 7/2)
D) (1/2, 5/2)
Question
Find the interval of convergence of the power series: k=1lnkk2(x43)k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { k ^ { 2 } } \left( x - \frac { 4 } { 3 } \right) ^ { k }

A) (1/3, 5/3]
B) (1/3, 7/3)
C) [1/3, 7/3)
D) [1/3, 7/3]
Question
Find the interval of convergence of the power series: k=0k!(x1)k\sum _ { k = 0 } ^ { \infty } k ! ( x - 1 ) ^ { k }

A) (-1, 1)
B) Converges only when x = 1
C) (0, 1)
D) (-?, ?)
Question
Find the interval of convergence of the power series: k=0(2k+1)!(x2)k\sum _ { k = 0 } ^ { \infty } ( 2 k + 1 ) ! ( x - 2 ) ^ { k }

A) Converges only when x = 0
B) Converges only when x = 1
C) Converges only when x = 2
D) (-?, ?)
Question
Find the radius of convergence of the series: k=0k!(k+2)!xk\sum _ { k = 0 } ^ { \infty } \frac { k ! } { ( k + 2 ) ! } x ^ { k }

A) R = 0
B) R = 1
C) R = 2
D) R = ?
Question
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xexf ( x ) = x e ^ { x }
Question
Find the fifth Maclaurin polynomial P5(x)P _ { 5 } ( x ) for the function f(x)=sinxf ( x ) = \sin x
Question
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xexf ( x ) = x e ^ { x }
Question
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=e2xf ( x ) = e ^ { - 2 x }
Question
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xcosxf ( x ) = x \cos x

A) 1x13x31 - x - \frac { 1 } { 3 } x ^ { 3 }
B) x13x2+13x4x - \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 4 }
C) x12x3x - \frac { 1 } { 2 } x ^ { 3 }
D) 1+x+13x31 + x + \frac { 1 } { 3 } x ^ { 3 }
Question
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=11xf ( x ) = \frac { 1 } { 1 - x }
Question
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=1+2xf ( x ) = \sqrt { 1 + 2 x }
Question
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=e2xf ( x ) = e ^ { 2 x } at x = 1.
Question
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=lnxf ( x ) = \ln x at x = 2.
Question
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=tan1xf ( x ) = \tan ^ { - 1 } x at x = 1.
Question
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=sinxf ( x ) = \sin x at x = π\pi /2.
Question
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xcosxf ( x ) = x \cos x at x = π\pi
Question
Find the Maclaurin series for the function f(x)=xcosxf ( x ) = x \cos x

A) k=0(1)kk!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k ! } x ^ { 2 k + 1 }
B) k=0(1)k(2k)!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k + 1 }
C) k=0(1)k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k }
D) k=0(1)k(2k)!xk+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { k + 1 }
Question
Find the Maclaurin series for the function f(x)=xe2xf ( x ) = x e ^ { 2 x }

A) k=02k(2k)!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { ( 2 k ) ! } x ^ { 2 k + 1 }
B) k=02kk!xk\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { k ! } x ^ { k }
C) k=02kk!xk+1\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { k ! } x ^ { k + 1 }
D) k=0(1)kk!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k ! } x ^ { 2 k + 1 }
Question
Find the Maclaurin series for the function f(x)=xtan1xf ( x ) = x \tan ^ { - 1 } x

A) k=0(1)k2k+1x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k + 1 } x ^ { 2 k }
B) k=0(1)k2k+1x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k + 1 } x ^ { 2 k + 1 }
C) k=0(1)k2kx2k+2\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k } x ^ { 2 k + 2 }
D) k=0(1)k2k+1x2k+2\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k + 1 } x ^ { 2 k + 2 }
Question
Find the Taylor series for the function f(x)=e2xf ( x ) = e ^ { 2 x } at x = 1.

A) k=02ke2k!xk\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } e ^ { 2 } } { k ! } x ^ { k }
B) k=02kk!(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { k ! } ( x - 1 ) ^ { k }
C) k=02ke2k!(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } e ^ { 2 } } { k ! } ( x - 1 ) ^ { k }
D) k=02k(k+1)!(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { ( k + 1 ) ! } ( x - 1 ) ^ { k }
Question
Find the Taylor series for the function f(x)=sinxf ( x ) = \sin x at x = π\pi /2.

A) k=0(1)k(2k+1)!(xπ2)2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { 2 k }
B) k=0(1)k(2k)!(xπ2)2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { 2 k + 1 }
C) k=0(1)k(2k)!(xπ2)2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { 2 k }
D) k=0(1)k(2k)!(xπ2)k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { k }
Question
Find the Taylor series for the function f(x)=lnxf ( x ) = \ln x at x = 2.
Question
Find the Maclaurin series for the function f(x)=ex2f ( x ) = e ^ { x ^ { 2 } } , and give the interval of convergence of the series.

A) k=01k!xk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } x ^ { k } interval of convergence: (0, 2)
B) k=012k!x2k\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 2 k ! } x ^ { 2 k } interval of convergence: (-1, 1)
C) k=01k!x2k\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } x ^ { 2 k } interval of convergence: (-?, ?)
D) k=01k!x2k\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } x ^ { 2 k } interval of convergence: (0, ? )
Question
Find the Maclaurin series for the function f(x)=cos(2x2)f ( x ) = \cos \left( 2 x ^ { 2 } \right) , and give the interval of convergence of the series.

A) k=022k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (-?, ?)
B) k=022k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (0, 1)
C) k=0(1)k22k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (-?, ?)
D) k=0(1)k22k(2k)!x4k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 4 k } interval of convergence: (-?, ?)
Question
Find the Maclaurin series for the function f(x)=xsin(x2)f ( x ) = x \sin \left( x ^ { 2 } \right) , and give the interval of convergence of the series.
Question
Find the Maclaurin series for the function f(x)=19x2f ( x ) = \frac { 1 } { 9 - x ^ { 2 } } , and give the interval of convergence of the series.
Question
Find the Maclaurin series for the function f(x)=xe2xf ( x ) = x e ^ { - 2 x } , and give the interval of convergence of the series.
Question
Find the Maclaurin series for the function f(x)=sin2xf ( x ) = \sin ^ { 2 } x
Question
Find the Maclaurin series for the function f(x)=xcos(x2)f ( x ) = x \cos \left( x ^ { 2 } \right) , and give the interval of convergence of the series.
Question
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=exsin2xf ( x ) = e ^ { x } \sin 2 x Also, give the interval of convergence.
Question
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=x21x2f ( x ) = \frac { x ^ { 2 } } { 1 - x ^ { 2 } } Also, give the interval of convergence.
Question
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=extan1xf ( x ) = e ^ { x } \tan ^ { - 1 } x Also, give the interval of convergence.
Question
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=e2xcosxf ( x ) = e ^ { 2 x } \cos x Also, give the interval of convergence.
Question
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=sinx1xf ( x ) = \frac { \sin x } { 1 - x } Also, give the interval of convergence.
Question
Find the series equal to the definite integral 0xcos(x2)dx\int _ { 0 } x \cos \left( x ^ { 2 } \right) d x
Question
Find the series equal to the definite integral 02sin(x2)dx\int _ { 0 } ^ { 2 } \sin \left( x ^ { 2 } \right) d x
Question
Find the series equal to the definite integral 0x2ex2dx\int _ { 0 } x ^ { 2 } e ^ { - x ^ { 2 } } d x
Question
Find the series equal to the definite integral 01dx8+x3\int _ { 0 } ^ { 1 } \frac { d x } { 8 + x ^ { 3 } }
Question
Find the series equal to the definite integral 02x2cos(x2)dx\int _ { 0 } ^ { 2 } x ^ { 2 } \cos \left( x ^ { 2 } \right) d x
Question
Find the series equal to the definite integral 12x2sin(3x)dx\int _ { 1 } ^ { 2 } x ^ { 2 } \sin ( 3 x ) d x
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/61
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Power Series
1
Find the interval of convergence and radius of convergence of the power series: k=011+3kxk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 1 + 3 ^ { k } } x ^ { k }

A) R = 1, interval of convergence: (-1, 1)
B) R = 1, interval of convergence: (-3, 3)
C) R = 3, interval of convergence: (-1, 1)
D) R = 3, interval of convergence: (-3, 3)
R = 3, interval of convergence: (-3, 3)
2
Find the interval of convergence and radius of convergence of the power series: k=011+5kxk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 1 + 5 ^ { k } } x ^ { k }

A) R = 1, interval of convergence: (3, 5)
B) R = 3, interval of convergence: (-3, -1)
C) R = 5, interval of convergence: (-5, 5)
D) R = 5, interval of convergence: (-5, -3)
R = 5, interval of convergence: (-5, 5)
3
Find the interval of convergence and radius of convergence of the power series: k=0(k+1)!xk\sum _ { k = 0 } ^ { \infty } ( k + 1 ) ! x ^ { k }

A) R = 1, interval of convergence: (-1, 1)
B) R = 0, series converges only when x = 1
C) R = 0, series converges only when x = 0
D) R = 1, interval of convergence: (0, 2)
R = 0, series converges only when x = 0
4
Find the interval of convergence and radius of convergence of the power series: k=0(3k)kx2k\sum _ { k = 0 } ^ { \infty } \left( \frac { 3 } { k } \right) ^ { k } x ^ { 2 k }

A) R = 1, interval of convergence: (-1, 1)
B) R = ?, interval of convergence: (-?, ?)
C) R = 1, interval of convergence: (0, 2)
D) R = 3, interval of convergence: (-3, 3)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
5
Find the interval of convergence and radius of convergence of the power series: k=0(3k)kx3k\sum _ { k = 0 } ^ { \infty } \left( \frac { 3 } { k } \right) ^ { k } x ^ { 3 k }

A) R = 1, interval of convergence: (-1, 1)
B) R = ?, interval of convergence: (-?, ?)
C) R = 1, interval of convergence: (0, 2)
D) R = 3, interval of convergence: (-3, 3)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
6
Find the interval of convergence of the power series: k=012k!xk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 2 k ! } x ^ { k }

A) (-1, 1)
B) Converges only when x = 0.
C) (0, 2)
D) (-?, ?)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
7
Find the interval of convergence of the power series: k=0xk(2k)!\sum _ { k = 0 } ^ { \infty } \frac { x ^ { k } } { ( 2 k ) ! }

A) (-1, 1)
B) (-?, ?)
C) (0, 2)
D) Converges only when x = 0
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
8
Find the interval of convergence of the power series: k=0(3)kk!xk\sum _ { k = 0 } ^ { \infty } \frac { ( - 3 ) ^ { k } } { k ! } x ^ { k }

A) (-1, 1)
B) (0, 2)
C) (-?, ?)
D) Converges only when x = 0
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
9
Find the interval of convergence of the power series: k=0(1)k(3k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 3 k ) ! } x ^ { 2 k }

A) (-1, 1)
B) (0, 2)
C) (-?, ?)
D) ( 0, 1)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
10
Find the interval of convergence of the power series: k=0(1)kk+2xk\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k + 2 } x ^ { k }

A) (-1, 1)
B) (0, 1)
C) [-1, 1]
D) (-1, 1]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
11
Find the interval of convergence of the power series: k=0(1)k3k+1x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 3 k + 1 } x ^ { 2 k }

A) (-1, 1)
B) (0, 1)
C) [-1, 1]
D) (-1, 1]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
12
Find the interval of convergence of the power series: k=0(1)k(2k)!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k + 1 }

A) (-1, 1)
B) (0, 2)
C) (- \infty , \infty )
D) (-1, 1]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
13
Find the interval of convergence of the power series: k=11k(x+3)k\sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } ( x + 3 ) ^ { k }

A) (-2, 2)
B) (-4, -2)
C) [-4, 2]
D) [-4, -2)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
14
Find the interval of convergence of the power series: k=03k+1k3(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 3 k + 1 } { k ^ { 3 } } ( x - 1 ) ^ { k }

A) (0, 2)
B) [0, 2)
C) (0, 2]
D) [0, 2]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
15
Find the interval of convergence of the power series: k=12k2(x+2)k\sum _ { k = 1 } ^ { \infty } \frac { 2 } { k ^ { 2 } } ( x + 2 ) ^ { k }

A) (-3, -1)
B) [-3, -1)
C) [-3, -1]
D) (-3, -1]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
16
Find the interval of convergence of the power series: k=0(1)kk22k(x2)k\sum _ { k = 0 } ^ { \infty } ( - 1 ) ^ { k } \frac { k ^ { 2 } } { 2 ^ { k } } ( x - 2 ) ^ { k }

A) [0, 4)
B) (0, 4)
C) (0, 4]
D) [0, 4]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
17
Find the interval of convergence of the power series: k=1(1)kkk3xk\sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k } \frac { \sqrt { k } } { k ^ { 3 } } x ^ { k }

A) (-1, 1)
B) [-1, 1)
C) (-1, 1]
D) [-1, 1]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
18
Find the interval of convergence of the power series: k=1(1)kkk2(x1)k\sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k } \frac { \sqrt { k } } { k ^ { 2 } } ( x - 1 ) ^ { k }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
19
Find the interval of convergence of the power series: k=0kk!(2x+3)k\sum _ { k = 0 } ^ { \infty } \frac { \sqrt { k } } { k ! } ( 2 x + 3 ) ^ { k }

A) (-1, 1)
B) Converges only when x = 0
C) (-?, ?)
D) (0, 2)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
20
Find the interval of convergence of the power series: k=0kk2(2x+3)k\sum _ { k = 0 } ^ { \infty } \frac { \sqrt { k } } { k ^ { 2 } } ( 2 x + 3 ) ^ { k }

A) (-2, -1)
B) (-2, -1]
C) [-2, -1)
D) [-2, -1]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
21
Find the interval of convergence of the power series: k=0k+12k(2x5)k\sum _ { k = 0 } ^ { \infty } \frac { k + 1 } { 2 ^ { k } } ( 2 x - 5 ) ^ { k }

A) (3/2, 5/2)
B) (3/2, 7/3)
C) (3/2, 7/2)
D) (1/2, 5/2)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
22
Find the interval of convergence of the power series: k=1lnkk2(x43)k\sum _ { k = 1 } ^ { \infty } \frac { \ln k } { k ^ { 2 } } \left( x - \frac { 4 } { 3 } \right) ^ { k }

A) (1/3, 5/3]
B) (1/3, 7/3)
C) [1/3, 7/3)
D) [1/3, 7/3]
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
23
Find the interval of convergence of the power series: k=0k!(x1)k\sum _ { k = 0 } ^ { \infty } k ! ( x - 1 ) ^ { k }

A) (-1, 1)
B) Converges only when x = 1
C) (0, 1)
D) (-?, ?)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
24
Find the interval of convergence of the power series: k=0(2k+1)!(x2)k\sum _ { k = 0 } ^ { \infty } ( 2 k + 1 ) ! ( x - 2 ) ^ { k }

A) Converges only when x = 0
B) Converges only when x = 1
C) Converges only when x = 2
D) (-?, ?)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
25
Find the radius of convergence of the series: k=0k!(k+2)!xk\sum _ { k = 0 } ^ { \infty } \frac { k ! } { ( k + 2 ) ! } x ^ { k }

A) R = 0
B) R = 1
C) R = 2
D) R = ?
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
26
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xexf ( x ) = x e ^ { x }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
27
Find the fifth Maclaurin polynomial P5(x)P _ { 5 } ( x ) for the function f(x)=sinxf ( x ) = \sin x
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
28
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xexf ( x ) = x e ^ { x }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
29
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=e2xf ( x ) = e ^ { - 2 x }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
30
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xcosxf ( x ) = x \cos x

A) 1x13x31 - x - \frac { 1 } { 3 } x ^ { 3 }
B) x13x2+13x4x - \frac { 1 } { 3 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 4 }
C) x12x3x - \frac { 1 } { 2 } x ^ { 3 }
D) 1+x+13x31 + x + \frac { 1 } { 3 } x ^ { 3 }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
31
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=11xf ( x ) = \frac { 1 } { 1 - x }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
32
Find the fourth Maclaurin polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=1+2xf ( x ) = \sqrt { 1 + 2 x }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
33
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=e2xf ( x ) = e ^ { 2 x } at x = 1.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
34
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=lnxf ( x ) = \ln x at x = 2.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
35
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=tan1xf ( x ) = \tan ^ { - 1 } x at x = 1.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
36
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=sinxf ( x ) = \sin x at x = π\pi /2.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
37
Find the fourth Taylor polynomial P4(x)P _ { 4 } ( x ) for the function f(x)=xcosxf ( x ) = x \cos x at x = π\pi
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
38
Find the Maclaurin series for the function f(x)=xcosxf ( x ) = x \cos x

A) k=0(1)kk!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k ! } x ^ { 2 k + 1 }
B) k=0(1)k(2k)!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k + 1 }
C) k=0(1)k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { 2 k }
D) k=0(1)k(2k)!xk+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } x ^ { k + 1 }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
39
Find the Maclaurin series for the function f(x)=xe2xf ( x ) = x e ^ { 2 x }

A) k=02k(2k)!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { ( 2 k ) ! } x ^ { 2 k + 1 }
B) k=02kk!xk\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { k ! } x ^ { k }
C) k=02kk!xk+1\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { k ! } x ^ { k + 1 }
D) k=0(1)kk!x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { k ! } x ^ { 2 k + 1 }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
40
Find the Maclaurin series for the function f(x)=xtan1xf ( x ) = x \tan ^ { - 1 } x

A) k=0(1)k2k+1x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k + 1 } x ^ { 2 k }
B) k=0(1)k2k+1x2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k + 1 } x ^ { 2 k + 1 }
C) k=0(1)k2kx2k+2\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k } x ^ { 2 k + 2 }
D) k=0(1)k2k+1x2k+2\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { 2 k + 1 } x ^ { 2 k + 2 }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
41
Find the Taylor series for the function f(x)=e2xf ( x ) = e ^ { 2 x } at x = 1.

A) k=02ke2k!xk\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } e ^ { 2 } } { k ! } x ^ { k }
B) k=02kk!(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { k ! } ( x - 1 ) ^ { k }
C) k=02ke2k!(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } e ^ { 2 } } { k ! } ( x - 1 ) ^ { k }
D) k=02k(k+1)!(x1)k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { k } } { ( k + 1 ) ! } ( x - 1 ) ^ { k }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
42
Find the Taylor series for the function f(x)=sinxf ( x ) = \sin x at x = π\pi /2.

A) k=0(1)k(2k+1)!(xπ2)2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { 2 k }
B) k=0(1)k(2k)!(xπ2)2k+1\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { 2 k + 1 }
C) k=0(1)k(2k)!(xπ2)2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { 2 k }
D) k=0(1)k(2k)!(xπ2)k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k ) ! } \left( x - \frac { \pi } { 2 } \right) ^ { k }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
43
Find the Taylor series for the function f(x)=lnxf ( x ) = \ln x at x = 2.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
44
Find the Maclaurin series for the function f(x)=ex2f ( x ) = e ^ { x ^ { 2 } } , and give the interval of convergence of the series.

A) k=01k!xk\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } x ^ { k } interval of convergence: (0, 2)
B) k=012k!x2k\sum _ { k = 0 } ^ { \infty } \frac { 1 } { 2 k ! } x ^ { 2 k } interval of convergence: (-1, 1)
C) k=01k!x2k\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } x ^ { 2 k } interval of convergence: (-?, ?)
D) k=01k!x2k\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } x ^ { 2 k } interval of convergence: (0, ? )
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
45
Find the Maclaurin series for the function f(x)=cos(2x2)f ( x ) = \cos \left( 2 x ^ { 2 } \right) , and give the interval of convergence of the series.

A) k=022k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (-?, ?)
B) k=022k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (0, 1)
C) k=0(1)k22k(2k)!x2k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 2 k } interval of convergence: (-?, ?)
D) k=0(1)k22k(2k)!x4k\sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } 2 ^ { 2 k } } { ( 2 k ) ! } x ^ { 4 k } interval of convergence: (-?, ?)
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
46
Find the Maclaurin series for the function f(x)=xsin(x2)f ( x ) = x \sin \left( x ^ { 2 } \right) , and give the interval of convergence of the series.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
47
Find the Maclaurin series for the function f(x)=19x2f ( x ) = \frac { 1 } { 9 - x ^ { 2 } } , and give the interval of convergence of the series.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
48
Find the Maclaurin series for the function f(x)=xe2xf ( x ) = x e ^ { - 2 x } , and give the interval of convergence of the series.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
49
Find the Maclaurin series for the function f(x)=sin2xf ( x ) = \sin ^ { 2 } x
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
50
Find the Maclaurin series for the function f(x)=xcos(x2)f ( x ) = x \cos \left( x ^ { 2 } \right) , and give the interval of convergence of the series.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
51
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=exsin2xf ( x ) = e ^ { x } \sin 2 x Also, give the interval of convergence.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
52
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=x21x2f ( x ) = \frac { x ^ { 2 } } { 1 - x ^ { 2 } } Also, give the interval of convergence.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
53
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=extan1xf ( x ) = e ^ { x } \tan ^ { - 1 } x Also, give the interval of convergence.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
54
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=e2xcosxf ( x ) = e ^ { 2 x } \cos x Also, give the interval of convergence.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
55
Use Maclaurin series to find first four nonzero terms in the Maclaurin series for the function f(x)=sinx1xf ( x ) = \frac { \sin x } { 1 - x } Also, give the interval of convergence.
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
56
Find the series equal to the definite integral 0xcos(x2)dx\int _ { 0 } x \cos \left( x ^ { 2 } \right) d x
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
57
Find the series equal to the definite integral 02sin(x2)dx\int _ { 0 } ^ { 2 } \sin \left( x ^ { 2 } \right) d x
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
58
Find the series equal to the definite integral 0x2ex2dx\int _ { 0 } x ^ { 2 } e ^ { - x ^ { 2 } } d x
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
59
Find the series equal to the definite integral 01dx8+x3\int _ { 0 } ^ { 1 } \frac { d x } { 8 + x ^ { 3 } }
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
60
Find the series equal to the definite integral 02x2cos(x2)dx\int _ { 0 } ^ { 2 } x ^ { 2 } \cos \left( x ^ { 2 } \right) d x
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
61
Find the series equal to the definite integral 12x2sin(3x)dx\int _ { 1 } ^ { 2 } x ^ { 2 } \sin ( 3 x ) d x
Unlock Deck
Unlock for access to all 61 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 61 flashcards in this deck.