Deck 10: Elasticity and Oscillations

Full screen (f)
exit full mode
Question
A force of 20 N20 \mathrm{~N} is applied to a wire with an unstretched length of 2.5 m2.5 \mathrm{~m} . The wire gets 2.00 mm2.00 \mathrm{~mm} longer. The strain in the wire is

A) 10×10410 \times 10^{-4} .
B) 8.0×1048.0 \times 10^{-4} .
C) 4.0×1044.0 \times 10^{-4} .
D) 6.0×1046.0 \times 10^{-4}
E) 2.0×1042.0 \times 10^{-4}
Use Space or
up arrow
down arrow
to flip the card.
Question
A wire has a strain of 0.10%0.10 \% . If the wire has an unstretched length of 5.00 m5.00 \mathrm{~m} , then the change in length of the wire is

A) 9.0 mm9.0 \mathrm{~mm} .
B) 15 mm15 \mathrm{~mm} .
C) 10 mm10 \mathrm{~mm} .
D) 5.0 mm5.0 \mathrm{~mm} .
E) 7.0 mm7.0 \mathrm{~mm} .
Question
A force of 15.0 N15.0 \mathrm{~N} is applied to a wire with an unstretched length of 4.00 m4.00 \mathrm{~m} and a diameter of 5.00 mm5.00 \mathrm{~mm} . If the wire changed length by 1.20 mm1.20 \mathrm{~mm} , then the strain in the wire is

A) 5.00×1045.00 \times 10^{-4} .
B) 2.00×1042.00 \times 10^{-4} .
C) 3.00×1043.00 \times 10^{-4} .
D) 1.00×1041.00 \times 10^{-4} .
E) 4.00×1044.00 \times 10^{-4} .
Question
A force of 10.0 N10.0 \mathrm{~N} is applied to a wire with an unstretched length of 4.00 m4.00 \mathrm{~m} and a diameter of 5.00 mm5.00 \mathrm{~mm} . The wire changes length by 1.20 mm1.20 \mathrm{~mm} as a result of the applied force. What is the stress on the wire?

A) 4.19×105 N/m24.19 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
B) 4.67×105 N/m24.67 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
C) 5.09×105 N/m25.09 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
D) 6.55×105 N/m26.55 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
E) 3.67×105 N/m23.67 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
Question
A force of 100 N100 \mathrm{~N} is applied to a rod with a diameter of 6.00 mm6.00 \mathrm{~mm} . The stress on the rod is

A) 2.03×106 N/m22.03 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
B) 2.64×106 N/m22.64 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
C) 3.54×106 N/m23.54 \times 10^{6}\mathrm{~N} / \mathrm{m}^{2} .
D) 5.47×106 N/m25.47 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
E) 4.15×106 N/m24.15 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
Question
A force of 500 N500 \mathrm{~N} is applied to a rod with a diameter of 4.00 mm4.00 \mathrm{~mm} . The stress on the rod is

A) 4.66×107 N/m24.66 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
B) 5.38×107 N/m25.38 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
C) 3.98×107 N/m23.98 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
D) 2.75×107 N/m22.75 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
E) 4.25×107 N/m24.25 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
Question
A force of 15.0 N15.0 \mathrm{~N} is applied to a wire with a diameter of 2.00 mm2.00 \mathrm{~mm} , causing its length to change by 1.20 mm1.20 \mathrm{~mm} . What is the stress on the wire?

A) 7.27×106 N/m27.27 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
B) 5.38×106 N/m25.38 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
C) 4.77×106 N/m24.77 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
D) 6.73×106 N/m26.73 \times10^{6}\mathrm{~N} / \mathrm{m}^{2} .
E) 8.75×106 N/m28.75 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
Question
A 2.00 m2.00 \mathrm{~m} brass rod with a 1.00 mm1.00 \mathrm{~mm} diameter behaves like a spring under stretching or compression. If the elastic modulus of brass is 9.10×1010 N/m29.10 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} , then the spring constant of the rod is

A) 4.67×104 N/m4.67 \times 10^{4} \mathrm{~N} / \mathrm{m} .
B) 2.13×104 N/m2.13 \times 10^{4} \mathrm{~N} / \mathrm{m} .
C) 4.22×104 N/m4.22 \times 10^{4} \mathrm{~N} / \mathrm{m} .
D) 3.57×104 N/m3.57 \times 10^{4} \mathrm{~N} / \mathrm{m} .
E) 2.47×104 N/m2.47 \times 10^{4} \mathrm{~N} / \mathrm{m} .
Question
A rod is 2.40 m2.40 \mathrm{~m} long and has a diameter of 2.50 mm2.50 \mathrm{~mm} . A force of 2000 N2000 \mathrm{~N} is applied to the end, stretching the rod by 1.40 mm1.40 \mathrm{~mm} . What is the elastic modulus for this rod?

A) 6.98×1011 N/m26.98 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
B) 1.75×1011 N/m21.75 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
C) 1.43×106 N/m21.43 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
D) 5.83×104 N/m25.83 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}
E) 4.07×108 N/m24.07 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
Question
A rod is 2.40 m2.40 \mathrm{~m} long and has a diameter of 2.50 mm2.50 \mathrm{~mm} . A force of 2000 N2000 \mathrm{~N} is applied to the end to stretch the rod by 1.00 mm1.00 \mathrm{~mm} . What is the elastic modulus for this rod?

A) 2.44×1011 N/m22.44 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
B) 2.00×106 N/m22.00 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
C) 4.17×104 N/m24.17 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}
D) 9.78×1011 N/m29.78 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
E) 4.07×108 N/m24.07 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
Question
A wire is 1.50 m1.50 \mathrm{~m} long and has a diameter of 1.50 mm1.50 \mathrm{~mm} . The elastic modulus of the wire is 6.20×1010 N/m26.20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} . If a force of 400 N400 \mathrm{~N} is applied to end of the wire, then the increase in length of the wire is

A) 3.95 mm3.95 \mathrm{~mm} .
B) 5.48 mm5.48 \mathrm{~mm} .
C) 3.45 mm3.45 \mathrm{~mm} .
D) 3.84 mm3.84 \mathrm{~mm} .
E) 4.28 mm4.28 \mathrm{~mm} .
Question
A wire is 12.00 m12.00 \mathrm{~m} long and has a diameter of 1.50 mm1.50 \mathrm{~mm} . The elastic modulus of the wire is 7.00×1010 N/m27.00 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} . If a force of 500 N500 \mathrm{~N} is applied to end of the wire, then the increase in length of the wire is

A) 38.5 mm38.5 \mathrm{~mm} .
B) 51.5 mm51.5 \mathrm{~mm} .
C) 44.1 mm44.1 \mathrm{~mm} .
D) 40.2 mm40.2 \mathrm{~mm} .
E) 48.5 mm48.5 \mathrm{~mm} .
Question
A cable is 50.0 m50.0 \mathrm{~m} long and has a diameter of 2.50 cm2.50 \mathrm{~cm} . A force of 10,000 N10,000 \mathrm{~N} is applied to the end of the cable. If the maximum stretch allowed in the cable is 2.00 mm2.00 \mathrm{~mm} , then what is the minimum elastic modulus allowed?

A) 1.27×1011 N/m21.27 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
B) 2.04×107 N/m22.04 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
C) 3.52×109 N/m23.52 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}
D) 5.09×1011 N/m25.09 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
E) 5.00×106 N/m25.00 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
Question
A cable is 5.00 m5.00 \mathrm{~m} long and has a diameter of 1.50 mm1.50 \mathrm{~mm} . The elastic modulus of the cable is 2.50×1010 N/m22.50 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} . A force is applied to the end of the cable and the cable stretches by 3.00 mm3.00 \mathrm{~mm} . What is the applied force?

A) 26.5 N26.5 \mathrm{~N}
B) 32.6 N32.6 \mathrm{~N}
C) 20.5 N20.5 \mathrm{~N}
D) 36.6 N36.6 \mathrm{~N}
E) 16.5 N16.5 \mathrm{~N}
Question
A cable is 10.0 m10.0 \mathrm{~m} long and has a diameter of 2.00 mm2.00 \mathrm{~mm} . A force of 45.0 N45.0 \mathrm{~N} is applied to the end of the cable and the cable stretches by 3.00 mm3.00 \mathrm{~mm} . What is the elastic modulus?

A) 3.67×1010 N/m23.67 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
B) 3.05×1010 N/m23.05 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
C) 4.77×1010 N/m24.77 \times10^{10}\mathrm{~N} / \mathrm{m}^{2}
D) 3.98×1010 N/m23.98 \times10^{10}\mathrm{~N} / \mathrm{m}^{2}
E) 4.26×1010 N/m24.26 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2}
Question
A nail projects 40.0 mm40.0 \mathrm{~mm} horizontally outward from a wall. A 25.0 N25.0 \mathrm{~N} coat is hung from the end of the nail and the nail deflects downward by 2.50×106 m2.50 \times 10^{-6} \mathrm{~m} . The shear strain of the nail is

A) 5.01×1055.01 \times 10^{-5} .
B) 6.25×1056.25 \times 10^{-5} .
C) 4.75×1054.75 \times 10^{-5} .
D) 5.75×1055.75 \times 10^{-5} .
E) 4.00×1054.00 \times 10^{-5} .
Question
A nail projects 25.0 mm25.0 \mathrm{~mm} horizontally outward from a wall. A picture is hung from the end of the nail and the nail deflects downward by 2.00×106 m2.00 \times 10^{-6} \mathrm{~m} . The shear strain of the nail is

A) 7.00×1057.00 \times 10^{-5} .
B) 8.00×1058.00 \times 10^{-5} .
C) 9.00×1059.00 \times 10^{-5} .
D) 12.0×10512.0 \times 10^{-5} .
E) 10.0×10510.0 \times 10^{-5} .
Question
A rod with a diameter of 2.00 mm2.00 \mathrm{~mm} , projects 20.0 mm20.0 \mathrm{~mm} horizontally outward from a wall. A 10.0 N10.0 \mathrm{~N} weight is hung from the end of the rod and the rod deflects downward by 4.00×106 m4.00 \times 10^{-6} \mathrm{~m} . The shear strain of the rod is

A) 1.00×1041.00 \times 10^{-4} .
B) 3.00×1043.00 \times 10^{-4} .
C) 2.00×1042.00 \times 10^{-4} .
D) 1.50×1041.50 \times 10^{-4} .
E) 2.50×1042.50 \times 10^{-4} .
Question
A rod with a diameter of 3.00 mm3.00 \mathrm{~mm} , projects 2.0 cm2.0 \mathrm{~cm} horizontally outward from a wall. A 50.0 N50.0 \mathrm{~N} weight is hung from the end of the rod and the rod deflects downward by 2.00×106 m2.00 \times 10^{-6} \mathrm{~m} . The shear strain of the rod is

A) 3.00×1043.00 \times 10^{-4} .
B) 1.00×1041.00 \times 10^{-4} .
C) 2.50×1042.50 \times 10-4 .
D) 1.50×1041.50 \times 10^{-4} .
E) 2.00×1042.00 \times 10^{-4} .
Question
Aball is subjected to a pressure of 25.0 atmospheres. The original diameter of the ball is 4.00 cm4.00 \mathrm{~cm} . The squeezed diameter of the ball is 3.99 cm3.99 \mathrm{~cm} . The volume strain of the ball is

A) 8.68×1038.68 \times 10^{-3} .
B) 6.53×1036.53 \times 10^{-3} .
C) 5.75×1035.75 \times 10^{-3} .
D) 5.00×1035.00 \times 10-3 .
E) 7.48×1037.48 \times 10^{-3} .
Question
A ball is subjected to a pressure of 2.0 atmospheres. The original diameter of the ball is 10.0 cm10.0 \mathrm{~cm} . The squeezed diameter of the ball is 9.999 cm9.999 \mathrm{~cm} . The volume strain of the ball is

A) 3.50×1043.50 \times 10^{-4} .
B) 3.00×1043.00 \times 10^{-4} .
C) 3.30×1043.30 \times 10^{-4} .
D) 3.90×1043.90 \times 10^{-4} .
E) 3.70×1043.70 \times 10-4 .
Question
A 120 N120 \mathrm{~N} picture hangs from a nail in the wall. The maximum shear stress the nail can sustain is 1.00×1061.00 \times 10^{6} N/m2\mathrm{N} / \mathrm{m}^{2} . The smallest diameter the nail can be is

A) 10.5 mm10.5 \mathrm{~mm} .
B) 13.7 mm13.7 \mathrm{~mm} .
C) 12.4 mm12.4 \mathrm{~mm} .
D) 15.9 mm15.9 \mathrm{~mm} .
E) 14.4 mm14.4 \mathrm{~mm} .
Question
A 24.0 N24.0 \mathrm{~N} picture hangs from a nail in the wall. The diameter of the nail is 2.00 mm2.00 \mathrm{~mm} . The shear stress on the nail is

A) 5.65×106 N/m25.65 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
B) 4.02×106 N/m24.02 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
C) 4.37×106 N/m24.37 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
D) 6.24×106 N/m26.24 \times 10^{6}\mathrm{~N} / \mathrm{m}^{2} .
E) 7.64×106 N/m27.64 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
Question
A 100 N100 \mathrm{~N} picture hangs from a nail in the wall. The diameter of the nail is 3.00 mm3.00 \mathrm{~mm} . The shear stress on the nail is

A) 1.62×107 N/m21.62 \times 10^{7} \mathrm{~N} / \mathrm{m} 2 .
B) 1.98×107 N/m21.98 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
C) 1.41×107 N/m21.41 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
D) 1.34×107 N/m21.34 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
E) 1.86×107 N/m21.86 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
Question
A 150 N150 \mathrm{~N} picture hangs from a nail in the wall. The maximum shear stress the nail can sustain is 2.00×1062.00 \times 10^{6} N/m2\mathrm{N} / \mathrm{m}^{2} . The smallest diameter the nail can be is

A) 6.03 mm6.03 \mathrm{~mm} .
B) 8.22 mm8.22 \mathrm{~mm} .
C) 7.52 mm7.52 \mathrm{~mm} .
D) 9.77 mm9.77 \mathrm{~mm} .
E) 7.97 mm7.97 \mathrm{~mm} .
Question
A cube of aluminum is at a depth of 1.00 km1.00 \mathrm{~km} under seawater whose density is 1,025 kg/m31,025 \mathrm{~kg} / \mathrm{m}^{3} . Atmospheric pressure is 101.3kPa101.3 \mathrm{kPa} . What is the volume stress on the cube? Use g=9.80 m/s2g=9.80 \mathrm{~m} / \mathrm{s}^{2} .

A) 1.34×107 Pa1.34 \times 10^{7} \mathrm{~Pa} .
B) 1.00×107 Pa1.00 \times 10^{7} \mathrm{~Pa} .
C) 2.60×107 Pa2.60 \times 10^{7} \mathrm{~Pa} .
D) 1.01×107 Pa1.01 \times 10^{7} \mathrm{~Pa} .
E) 3.01×107 Pa3.01 \times 10^{7} \mathrm{~Pa} .
Question
Aball of aluminum is at a depth of 100.0 m100.0 \mathrm{~m} under water whose density is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} . Atmospheric pressure is 101.3kPa101.3 \mathrm{kPa} . What is the volume stress on the ball? Use g=9.80 m/s2\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2} .

A) 2.13×106 Pa2.13 \times 10^{6} \mathrm{~Pa} .
B) 1.08×106 Pa1.08 \times 10^{6} \mathrm{~Pa} .
C) 1.28×105 Pa1.28 \times 10^{5} \mathrm{~Pa} .
D) 2.33×106 Pa2.33 \times 10^{6} \mathrm{~Pa} .
E) 9.80×105 Pa9.80 \times 10^{5} \mathrm{~Pa} .
Question
A cube of aluminum is at a depth of 1.00 km1.00 \mathrm{~km} under water whose density is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} . Atmospheric pressure is 101.3kPa101.3 \mathrm{kPa} . What is the volume stress on the cube? Use g=9.80 m/s2\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2} .

A) 1.00×107 Pa1.00 \times 10^{7} \mathrm{~Pa} .
B) 9.60×106 Pa9.60 \times 10^{6} \mathrm{~Pa} .
C) 9.70×106 Pa9.70 \times 10^{6} \mathrm{~Pa} .
D) 9.80×106 Pa9.80 \times 10^{6} \mathrm{~Pa} .
E) 9.90×106 Pa9.90 \times 10^{6} \mathrm{~Pa} .
Question
A rod with a diameter of 2.00 mm2.00 \mathrm{~mm} projects 20.0 mm20.0 \mathrm{~mm} horizontally outward from a wall. A 10.0 N10.0 \mathrm{~N} weight is hung from the end of the rod and the rod deflects downward by 4.00×106 m4.00 \times 10-6 \mathrm{~m} . The shear modulus of the rod is

A) 1.42×1010 N/m21.42 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} .
B) 2.28×1010 N/m22.28 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
C) 1.67×1010 N/m21.67 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
D) 1.99×1010 N/m21.99 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
E) 1.59×1010 N/m21.59 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
Question
A nail with a diameter of 1.00 mm1.00 \mathrm{~mm} projects 25.0 mm25.0 \mathrm{~mm} horizontally outward from a wall. A 40.0 N40.0 \mathrm{~N} picture is hung from the end of the nail. If the shear modulus is 3.40×1010 N/m23.40 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} , then how much does the nail deflect downward?

A) 4.45×105 m4.45 \times 10^{-5} \mathrm{~m}
B) 3.74×105 m3.74 \times 10^{-5} \mathrm{~m}
C) 7.85×105 m7.85 \times 10^{-5} \mathrm{~m}
D) 4.78×105 m4.78 \times 10^{-5} \mathrm{~m}
E) 5.65×105 m5.65 \times 10^{-5} \mathrm{~m}
Question
A nail projects 25.0 mm25.0 \mathrm{~mm} horizontally outward from a wall. A 400 N400 \mathrm{~N} picture is hung from the end of the nail, and the nail deflects downward by 2.00×105 m2.00 \times 10^{-5} \mathrm{~m} . If the shear modulus is 3.40×1010 N/m23.40 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} , then what is the radius of the nail?

A) 2.16 mm2.16 \mathrm{~mm}
B) 2.65 mm2.65 \mathrm{~mm}
C) 1.86 mm1.86 \mathrm{~mm}
D) 2.44 mm2.44 \mathrm{~mm}
E) 1.60 mm1.60 \mathrm{~mm}
Question
A rod with a diameter of 2.00 mm2.00 \mathrm{~mm} projects 20.0 mm20.0 \mathrm{~mm} horizontally outward from a wall. A 2.00 N2.00 \mathrm{~N} coat is hung from the end of the rod and the rod deflects downward by 4.00×106 m4.00 \times 10^{-6} \mathrm{~m} . The shear stress on the rod is

A) 3.37×105 N/m23.37 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
B) 2.78×105 N/m22.78 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
C) 6.37×105 N/m26.37 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
D) 5.34×105 N/m25.34 \times 10^{5}\mathrm{~N} / \mathrm{m}^{2} .
E) 4.73×105 N/m24.73 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
Question
An aluminum ball is subjected to a pressure of 7.00×106 Pa7.00 \times 10^{6} \mathrm{~Pa} . The volume strain is 1.0×104-1.0 \times 10^{-4} . What is the bulk modulus?

A) 8.1×1010 N/m28.1 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
B) 6.3×1010 N/m26.3 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
C) 5.8×1010 N/m25.8 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
D) 7.0×1010 N/m27.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
E) 6.1×1010 N/m26.1 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2}
Question
A copper ball with a diameter of 5.00 cm5.00 \mathrm{~cm} is subjected to a pressure of 2.50×106 Pa2.50 \times 10^{6} \mathrm{~Pa} . The bulk modulus for copper is 1.40×1011 N/m21.40 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} . What is the magnitude of the volume strain?

A) 2.94×1052.94 \times 10-5
B) 1.79×1051.79 \times 10^{-5}
C) 3.21×1053.21 \times 10^{-5}
D) 2.55×1052.55 \times 10^{-5}
E) 2.09×1052.09 \times 10^{-5}
Question
A copper ball with a diameter of 5.00 cm5.00 \mathrm{~cm} is subjected to a pressure increase of 2.50×106 Pa2.50 \times 106 \mathrm{~Pa} . The bulk modulus for copper is 1.40×1011 N/m21.40 \times 10^{11}\mathrm{~N} / \mathrm{m}^{2} . What is the magnitude of the resulting change in the volume?

A) 1.70×103 cm31.70 \times 10^{-3} \mathrm{~cm}^{3}
B) 1.01×103 cm31.01 \times 10^{-3} \mathrm{~cm}^{3}
C) 1.58×103 cm31.58 \times 10^{-3} \mathrm{~cm}^{3}
D) 1.17×103 cm31.17 \times 10^{-3} \mathrm{~cm}^{3}
E) 1.20×103 cm31.20 \times 10^{-3} \mathrm{~cm}^{3}
Question
A steel ball with a diameter of 10 cm10 \mathrm{~cm} is subjected to a pressure that causes the volume of the ball to shrink by 0.01%0.01 \% . The bulk modulus for steel is 1.6×1011 N/m21.6 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} . What is the pressure?

A) 1.6×107 N/m21.6 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
B) 2.4×107 N/m22.4 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
C) 1.2×107 N/m21.2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
D) 1.9×107 N/m21.9 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
E) 2.1×107 N/m22.1 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
Question
Seawater has a density of 1,025 kg/m31,025 \mathrm{~kg} / \mathrm{m}^{3} at the surface. The bulk modulus of seawater is 2.100×109 N/m22.100 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} . What is the density of seawater at a depth of 10.00 km10.00 \mathrm{~km} ? (Use g=9.8 m/s2g=9.8 \mathrm{~m} / \mathrm{s}^{2} and ignore any change in density with depth when calculating the pressure.)

A) 1230 kg/m31230 \mathrm{~kg} / \mathrm{m}^{3}
B) 1764 kg/m31764 \mathrm{~kg} / \mathrm{m}^{3}
C) 1076 kg/m31076 \mathrm{~kg} / \mathrm{m}^{3}
D) 1574 kg/m31574 \mathrm{~kg} / \mathrm{m}^{3}
E) 1973 kg/m31973 \mathrm{~kg} / \mathrm{m}^{3}
Question
An equation that describes the displacement of an object moving in simple harmonic motion is x(t)=(1.20 m)x(t)=(1.20 \mathrm{~m}) sin[(2.40rad/s)t]\sin [(2.40 \mathrm{rad} / \mathrm{s}) t] . What is the maximum velocity of the object?

A) 5.32 m/s5.32 \mathrm{~m} / \mathrm{s}
B) 4.82 m/s4.82 \mathrm{~m} / \mathrm{s}
C) 2.03 m/s2.03 \mathrm{~m} / \mathrm{s}
D) 3.68 m/s3.68 \mathrm{~m} / \mathrm{s}
E) 2.88 m/s2.88 \mathrm{~m} / \mathrm{s}
Question
A 4.00 kg4.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . The velocity is given by the expression v(t)=(12.8 cm/s)cos(ωt+π/4)v(t)=(12.8 \mathrm{~cm} / \mathrm{s}) \cos (\omega t+\pi / 4) . What is the maximum acceleration of the mass?

A) 13.6 cm/s213.6 \mathrm{~cm} / \mathrm{s}^{2}
B) 20.2 cm/s220.2 \mathrm{~cm} / \mathrm{s}^{2}
C) 19.2 cm/s219.2 \mathrm{~cm} / \mathrm{s}^{2}
D) 24.5 cm/s224.5 \mathrm{~cm} / \mathrm{s}^{2}
E) 16.2 cm/s216.2 \mathrm{~cm} / \mathrm{s}^{2}
Question
A 4.00 kg4.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 12.0 cm/s12.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 4.00 cm4.00 \mathrm{~cm} , then what is the maximum velocity of the mass?

A) 15.5 cm/s15.5 \mathrm{~cm} / \mathrm{s}
B) 19.8 cm/s19.8 \mathrm{~cm} / \mathrm{s}
C) 11.5 cm/s11.5 \mathrm{~cm} / \mathrm{s}
D) 20.3 cm/s20.3 \mathrm{~cm} / \mathrm{s}
E) 13.4 cm/s13.4 \mathrm{~cm} / \mathrm{s}
Question
A 1.0 kg1.0 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.0 N/m9.0 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.0 cm/s4.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 2.0 cm2.0 \mathrm{~cm} , then what is the maximum kinetic energy of the mass?

A) 0.0020 J0.0020 \mathrm{~J}
B) 0.0078 J0.0078 \mathrm{~J}
C) 0.0026 J0.0026 \mathrm{~J}
D) 0.0023 J0.0023 \mathrm{~J}
E) 0.0012 J0.0012 \mathrm{~J}
Question
A 1.0 kg1.0 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.0 N/m9.0 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.0 cm/s4.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 2.0 cm2.0 \mathrm{~cm} , then what is the maximum elastic potential energy of the spring?

A) 0.0059 J0.0059 \mathrm{~J}
B) 0.0035 J0.0035 \mathrm{~J}
C) 0.0060 J0.0060 \mathrm{~J}
D) 0.0026 J0.0026 \mathrm{~J}
E) 0.0067 J0.0067 \mathrm{~J}
Question
A 1.0 kg1.0 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 0.0 cm/s0.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 2.0 cm2.0 \mathrm{~cm} , then what is the maximum kinetic energy of the mass?

A) 0.014 J0.014 \mathrm{~J}
B) 0.0018 J0.0018 \mathrm{~J}
C) 0.0075 J0.0075 \mathrm{~J}
D) 0.0012 J0.0012 \mathrm{~J}
E) 0.0090 J0.0090 \mathrm{~J}
Question
A 1.00 kg1.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.00 cm/s4.00 \mathrm{~cm} / \mathrm{s} and the initial displacement is 0.00 cm0.00 \mathrm{~cm} , then what is the maximum elastic potential energy of the spring?

A) 6.70×104 J6.70 \times 10-4 \mathrm{~J}
B) 7.50×104 J7.50 \times 10-4 \mathrm{~J}
C) 9.10×104 J9.10 \times 10^{-4} \mathrm{~J}
D) 5.00×104 J5.00 \times 10^{-4} \mathrm{~J}
E) 8.00×104 J8.00 \times 10^{-4} \mathrm{~J}
Question
A 1.00 kg1.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.00 cm/s4.00 \mathrm{~cm} / \mathrm{s} and the initial displacement is 0.00 cm0.00 \mathrm{~cm} , then what is the amplitude of the oscillations?

A) 1.33 cm1.33 \mathrm{~cm}
B) 1.67 cm1.67 \mathrm{~cm}
C) 2.67 cm2.67 \mathrm{~cm}
D) 2.05 cm2.05 \mathrm{~cm}
E) 2.33 cm2.33 \mathrm{~cm}
Question
A 2.00 kg2.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . The displacement is given by the expression x(t)=(12.0 cm)sin(ωt)x(t)=(12.0 \mathrm{~cm}) \sin (\omega t) . What is the period of the simple harmonic motion?

A) 4.75sec4.75 \mathrm{sec}
B) 4.27sec4.27 \mathrm{sec}
C) 3.36sec3.36 \mathrm{sec}
D) 2.96sec2.96 \mathrm{sec}
E) 3.95sec3.95 \mathrm{sec}
Question
A pendulum is made by attaching a 4.00 kg4.00 \mathrm{~kg} mass to the end of a thin, 75.0 cm75.0 \mathrm{~cm} long, massless rod. The period of (small amplitude) oscillations of the pendulum is

A) 1.74sec1.74 \mathrm{sec} .
B) 2.01sec2.01 \mathrm{sec} .
C) 1.04sec1.04 \mathrm{sec} .
D) 1.33sec1.33 \mathrm{sec} .
E) 2.45 sec.
Question
A pendulum is made by attaching a 4.00 kg4.00 \mathrm{~kg} mass to the end of a thin, massless rod. The period of small-amplitude oscillations of the pendulum is 1.00sec1.00 \mathrm{sec} . What is the length of the rod?

A) 29.7 cm29.7 \mathrm{~cm}
B) 34.1 cm34.1 \mathrm{~cm}
C) 36.2 cm36.2 \mathrm{~cm}
D) 24.8 cm24.8 \mathrm{~cm}
E) 31.4 cm31.4 \mathrm{~cm}
Question
Consider a physical pendulum constructed by attaching a thin, massless rod to the center of a uniform disc of mass 500 g500 \mathrm{~g} and radius 4.00 cm4.00 \mathrm{~cm} . The disc has a moment of inertia of 112MR21 \frac{1}{2} \mathrm{MR}^{2} about an axis perpendicular to the plane of the disc, through its center. With the rod hung from one end (the pivot), the plane of the disc (attached to the other end) is vertical. If the rod has a length of 50.0 cm50.0 \mathrm{~cm} , then the period of (small amplitude) oscillations of the pendulum will be

A) 1.24sec1.24 \mathrm{sec} .
B) 1.74sec1.74 \mathrm{sec} .
C) 2.25 sec.
D) 1.42sec1.42 \mathrm{sec} .
E) 1.90sec1.90 \mathrm{sec}
Question
Consider a physical pendulum constructed by attaching a thin, massless rod to the center of a uniform disc of mass 1.00 kg1.00 \mathrm{~kg} and radius 40.0 cm40.0 \mathrm{~cm} . The disc has a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} about an axis perpendicular to the plane of the disc, through its center. With the rod hung from one end (the pivot), the plane of the disc (attached to the other end) is vertical. If the rod has a length of 50.0 cm50.0 \mathrm{~cm} , then the period of (small amplitude) oscillations of the pendulum will be

A) 1.63sec1.63 \mathrm{sec} .
B) 2.03sec2.03 \mathrm{sec} .
C) 1.89sec1.89 \mathrm{sec} .
D) 2.22 sec.
E) 1.32sec1.32 \mathrm{sec} .
Question
Diatomic molecules such as H2\mathrm{H}_{2} and O2\mathrm{O}_{2} undergo simple harmonic motion with frequencies that obey Hooke's Law, with an effective mass equal to half the atomic mass. If the mass of a hydrogen atom is 1.67×1027 kg1.67 \times 10^{-27} \mathrm{~kg} and the observed frequency of oscillation is 1.25×1014 Hz1.25 \times 10^{14} \mathrm{~Hz} , what is the effective spring constant associated with the bond between the hydrogen atoms?

A) 515 N/m515 \mathrm{~N} / \mathrm{m}
B) 13 N/m13 \mathrm{~N} / \mathrm{m}
C) 164 N/m164 \mathrm{~N} / \mathrm{m}
D) 82 N/m82 \mathrm{~N} / \mathrm{m}
E) 1030 N/m1030 \mathrm{~N} / \mathrm{m}
Question
Diatomic molecules such as H2\mathrm{H}_{2} and O2\mathrm{O}_{2} undergo simple harmonic motion with frequencies that obey Hooke's Law, with an effective mass equal to half the atomic mass. If the mass of an oxygen atom is 2.66×1026 kg2.66 \times 10^{-26} \mathrm{~kg} and the observed frequency of oscillation is 4.66×1013 Hz4.66 \times 1013 \mathrm{~Hz} , what is the effective spring constant associated with the bond between the atoms in an oxygen molecule (O2)\left(\mathrm{O}_{2}\right) ?

A) 182 N/m182 \mathrm{~N} / \mathrm{m}
B) 1140 N/m1140 \mathrm{~N} / \mathrm{m}
C) 29 N/m29 \mathrm{~N} / \mathrm{m}
D) 116 N/m116 \mathrm{~N} / \mathrm{m}
E) 2280 N/m2280 \mathrm{~N} / \mathrm{m}
Question
Diatomic molecules such as H2\mathrm{H}_{2} and F2\mathrm{F}_{2} undergo simple harmonic motion with frequencies that obey Hooke's Law, with an effective mass equal to half the atomic mass. If the mass of a hydrogen atom is 1.627×10271.627 \times 10^{-27} kg\mathrm{kg} and the mass of a fluorine atom is 3.17×1026 kg3.17 \times 10^{-26} \mathrm{~kg} , what is the approximate ratio of the oscillation frequency of H2\mathrm{H}_{2} to that of F2\mathrm{F}_{2} , assuming the bond strengths are the same?

A) 38
B) 9.5
C) 360
D) 19
E) 4.4
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/53
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 10: Elasticity and Oscillations
1
A force of 20 N20 \mathrm{~N} is applied to a wire with an unstretched length of 2.5 m2.5 \mathrm{~m} . The wire gets 2.00 mm2.00 \mathrm{~mm} longer. The strain in the wire is

A) 10×10410 \times 10^{-4} .
B) 8.0×1048.0 \times 10^{-4} .
C) 4.0×1044.0 \times 10^{-4} .
D) 6.0×1046.0 \times 10^{-4}
E) 2.0×1042.0 \times 10^{-4}
8.0×1048.0 \times 10^{-4} .
2
A wire has a strain of 0.10%0.10 \% . If the wire has an unstretched length of 5.00 m5.00 \mathrm{~m} , then the change in length of the wire is

A) 9.0 mm9.0 \mathrm{~mm} .
B) 15 mm15 \mathrm{~mm} .
C) 10 mm10 \mathrm{~mm} .
D) 5.0 mm5.0 \mathrm{~mm} .
E) 7.0 mm7.0 \mathrm{~mm} .
5.0 mm5.0 \mathrm{~mm} .
3
A force of 15.0 N15.0 \mathrm{~N} is applied to a wire with an unstretched length of 4.00 m4.00 \mathrm{~m} and a diameter of 5.00 mm5.00 \mathrm{~mm} . If the wire changed length by 1.20 mm1.20 \mathrm{~mm} , then the strain in the wire is

A) 5.00×1045.00 \times 10^{-4} .
B) 2.00×1042.00 \times 10^{-4} .
C) 3.00×1043.00 \times 10^{-4} .
D) 1.00×1041.00 \times 10^{-4} .
E) 4.00×1044.00 \times 10^{-4} .
3.00×1043.00 \times 10^{-4} .
4
A force of 10.0 N10.0 \mathrm{~N} is applied to a wire with an unstretched length of 4.00 m4.00 \mathrm{~m} and a diameter of 5.00 mm5.00 \mathrm{~mm} . The wire changes length by 1.20 mm1.20 \mathrm{~mm} as a result of the applied force. What is the stress on the wire?

A) 4.19×105 N/m24.19 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
B) 4.67×105 N/m24.67 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
C) 5.09×105 N/m25.09 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
D) 6.55×105 N/m26.55 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
E) 3.67×105 N/m23.67 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
5
A force of 100 N100 \mathrm{~N} is applied to a rod with a diameter of 6.00 mm6.00 \mathrm{~mm} . The stress on the rod is

A) 2.03×106 N/m22.03 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
B) 2.64×106 N/m22.64 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
C) 3.54×106 N/m23.54 \times 10^{6}\mathrm{~N} / \mathrm{m}^{2} .
D) 5.47×106 N/m25.47 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
E) 4.15×106 N/m24.15 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
6
A force of 500 N500 \mathrm{~N} is applied to a rod with a diameter of 4.00 mm4.00 \mathrm{~mm} . The stress on the rod is

A) 4.66×107 N/m24.66 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
B) 5.38×107 N/m25.38 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
C) 3.98×107 N/m23.98 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
D) 2.75×107 N/m22.75 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
E) 4.25×107 N/m24.25 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
7
A force of 15.0 N15.0 \mathrm{~N} is applied to a wire with a diameter of 2.00 mm2.00 \mathrm{~mm} , causing its length to change by 1.20 mm1.20 \mathrm{~mm} . What is the stress on the wire?

A) 7.27×106 N/m27.27 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
B) 5.38×106 N/m25.38 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
C) 4.77×106 N/m24.77 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
D) 6.73×106 N/m26.73 \times10^{6}\mathrm{~N} / \mathrm{m}^{2} .
E) 8.75×106 N/m28.75 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
8
A 2.00 m2.00 \mathrm{~m} brass rod with a 1.00 mm1.00 \mathrm{~mm} diameter behaves like a spring under stretching or compression. If the elastic modulus of brass is 9.10×1010 N/m29.10 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} , then the spring constant of the rod is

A) 4.67×104 N/m4.67 \times 10^{4} \mathrm{~N} / \mathrm{m} .
B) 2.13×104 N/m2.13 \times 10^{4} \mathrm{~N} / \mathrm{m} .
C) 4.22×104 N/m4.22 \times 10^{4} \mathrm{~N} / \mathrm{m} .
D) 3.57×104 N/m3.57 \times 10^{4} \mathrm{~N} / \mathrm{m} .
E) 2.47×104 N/m2.47 \times 10^{4} \mathrm{~N} / \mathrm{m} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
9
A rod is 2.40 m2.40 \mathrm{~m} long and has a diameter of 2.50 mm2.50 \mathrm{~mm} . A force of 2000 N2000 \mathrm{~N} is applied to the end, stretching the rod by 1.40 mm1.40 \mathrm{~mm} . What is the elastic modulus for this rod?

A) 6.98×1011 N/m26.98 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
B) 1.75×1011 N/m21.75 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
C) 1.43×106 N/m21.43 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
D) 5.83×104 N/m25.83 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}
E) 4.07×108 N/m24.07 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
10
A rod is 2.40 m2.40 \mathrm{~m} long and has a diameter of 2.50 mm2.50 \mathrm{~mm} . A force of 2000 N2000 \mathrm{~N} is applied to the end to stretch the rod by 1.00 mm1.00 \mathrm{~mm} . What is the elastic modulus for this rod?

A) 2.44×1011 N/m22.44 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
B) 2.00×106 N/m22.00 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
C) 4.17×104 N/m24.17 \times 10^{-4} \mathrm{~N} / \mathrm{m}^{2}
D) 9.78×1011 N/m29.78 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
E) 4.07×108 N/m24.07 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
11
A wire is 1.50 m1.50 \mathrm{~m} long and has a diameter of 1.50 mm1.50 \mathrm{~mm} . The elastic modulus of the wire is 6.20×1010 N/m26.20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} . If a force of 400 N400 \mathrm{~N} is applied to end of the wire, then the increase in length of the wire is

A) 3.95 mm3.95 \mathrm{~mm} .
B) 5.48 mm5.48 \mathrm{~mm} .
C) 3.45 mm3.45 \mathrm{~mm} .
D) 3.84 mm3.84 \mathrm{~mm} .
E) 4.28 mm4.28 \mathrm{~mm} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
12
A wire is 12.00 m12.00 \mathrm{~m} long and has a diameter of 1.50 mm1.50 \mathrm{~mm} . The elastic modulus of the wire is 7.00×1010 N/m27.00 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} . If a force of 500 N500 \mathrm{~N} is applied to end of the wire, then the increase in length of the wire is

A) 38.5 mm38.5 \mathrm{~mm} .
B) 51.5 mm51.5 \mathrm{~mm} .
C) 44.1 mm44.1 \mathrm{~mm} .
D) 40.2 mm40.2 \mathrm{~mm} .
E) 48.5 mm48.5 \mathrm{~mm} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
13
A cable is 50.0 m50.0 \mathrm{~m} long and has a diameter of 2.50 cm2.50 \mathrm{~cm} . A force of 10,000 N10,000 \mathrm{~N} is applied to the end of the cable. If the maximum stretch allowed in the cable is 2.00 mm2.00 \mathrm{~mm} , then what is the minimum elastic modulus allowed?

A) 1.27×1011 N/m21.27 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
B) 2.04×107 N/m22.04 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
C) 3.52×109 N/m23.52 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}
D) 5.09×1011 N/m25.09 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
E) 5.00×106 N/m25.00 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
14
A cable is 5.00 m5.00 \mathrm{~m} long and has a diameter of 1.50 mm1.50 \mathrm{~mm} . The elastic modulus of the cable is 2.50×1010 N/m22.50 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} . A force is applied to the end of the cable and the cable stretches by 3.00 mm3.00 \mathrm{~mm} . What is the applied force?

A) 26.5 N26.5 \mathrm{~N}
B) 32.6 N32.6 \mathrm{~N}
C) 20.5 N20.5 \mathrm{~N}
D) 36.6 N36.6 \mathrm{~N}
E) 16.5 N16.5 \mathrm{~N}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
15
A cable is 10.0 m10.0 \mathrm{~m} long and has a diameter of 2.00 mm2.00 \mathrm{~mm} . A force of 45.0 N45.0 \mathrm{~N} is applied to the end of the cable and the cable stretches by 3.00 mm3.00 \mathrm{~mm} . What is the elastic modulus?

A) 3.67×1010 N/m23.67 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
B) 3.05×1010 N/m23.05 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
C) 4.77×1010 N/m24.77 \times10^{10}\mathrm{~N} / \mathrm{m}^{2}
D) 3.98×1010 N/m23.98 \times10^{10}\mathrm{~N} / \mathrm{m}^{2}
E) 4.26×1010 N/m24.26 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
16
A nail projects 40.0 mm40.0 \mathrm{~mm} horizontally outward from a wall. A 25.0 N25.0 \mathrm{~N} coat is hung from the end of the nail and the nail deflects downward by 2.50×106 m2.50 \times 10^{-6} \mathrm{~m} . The shear strain of the nail is

A) 5.01×1055.01 \times 10^{-5} .
B) 6.25×1056.25 \times 10^{-5} .
C) 4.75×1054.75 \times 10^{-5} .
D) 5.75×1055.75 \times 10^{-5} .
E) 4.00×1054.00 \times 10^{-5} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
17
A nail projects 25.0 mm25.0 \mathrm{~mm} horizontally outward from a wall. A picture is hung from the end of the nail and the nail deflects downward by 2.00×106 m2.00 \times 10^{-6} \mathrm{~m} . The shear strain of the nail is

A) 7.00×1057.00 \times 10^{-5} .
B) 8.00×1058.00 \times 10^{-5} .
C) 9.00×1059.00 \times 10^{-5} .
D) 12.0×10512.0 \times 10^{-5} .
E) 10.0×10510.0 \times 10^{-5} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
18
A rod with a diameter of 2.00 mm2.00 \mathrm{~mm} , projects 20.0 mm20.0 \mathrm{~mm} horizontally outward from a wall. A 10.0 N10.0 \mathrm{~N} weight is hung from the end of the rod and the rod deflects downward by 4.00×106 m4.00 \times 10^{-6} \mathrm{~m} . The shear strain of the rod is

A) 1.00×1041.00 \times 10^{-4} .
B) 3.00×1043.00 \times 10^{-4} .
C) 2.00×1042.00 \times 10^{-4} .
D) 1.50×1041.50 \times 10^{-4} .
E) 2.50×1042.50 \times 10^{-4} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
19
A rod with a diameter of 3.00 mm3.00 \mathrm{~mm} , projects 2.0 cm2.0 \mathrm{~cm} horizontally outward from a wall. A 50.0 N50.0 \mathrm{~N} weight is hung from the end of the rod and the rod deflects downward by 2.00×106 m2.00 \times 10^{-6} \mathrm{~m} . The shear strain of the rod is

A) 3.00×1043.00 \times 10^{-4} .
B) 1.00×1041.00 \times 10^{-4} .
C) 2.50×1042.50 \times 10-4 .
D) 1.50×1041.50 \times 10^{-4} .
E) 2.00×1042.00 \times 10^{-4} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
20
Aball is subjected to a pressure of 25.0 atmospheres. The original diameter of the ball is 4.00 cm4.00 \mathrm{~cm} . The squeezed diameter of the ball is 3.99 cm3.99 \mathrm{~cm} . The volume strain of the ball is

A) 8.68×1038.68 \times 10^{-3} .
B) 6.53×1036.53 \times 10^{-3} .
C) 5.75×1035.75 \times 10^{-3} .
D) 5.00×1035.00 \times 10-3 .
E) 7.48×1037.48 \times 10^{-3} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
21
A ball is subjected to a pressure of 2.0 atmospheres. The original diameter of the ball is 10.0 cm10.0 \mathrm{~cm} . The squeezed diameter of the ball is 9.999 cm9.999 \mathrm{~cm} . The volume strain of the ball is

A) 3.50×1043.50 \times 10^{-4} .
B) 3.00×1043.00 \times 10^{-4} .
C) 3.30×1043.30 \times 10^{-4} .
D) 3.90×1043.90 \times 10^{-4} .
E) 3.70×1043.70 \times 10-4 .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
22
A 120 N120 \mathrm{~N} picture hangs from a nail in the wall. The maximum shear stress the nail can sustain is 1.00×1061.00 \times 10^{6} N/m2\mathrm{N} / \mathrm{m}^{2} . The smallest diameter the nail can be is

A) 10.5 mm10.5 \mathrm{~mm} .
B) 13.7 mm13.7 \mathrm{~mm} .
C) 12.4 mm12.4 \mathrm{~mm} .
D) 15.9 mm15.9 \mathrm{~mm} .
E) 14.4 mm14.4 \mathrm{~mm} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
23
A 24.0 N24.0 \mathrm{~N} picture hangs from a nail in the wall. The diameter of the nail is 2.00 mm2.00 \mathrm{~mm} . The shear stress on the nail is

A) 5.65×106 N/m25.65 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
B) 4.02×106 N/m24.02 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
C) 4.37×106 N/m24.37 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
D) 6.24×106 N/m26.24 \times 10^{6}\mathrm{~N} / \mathrm{m}^{2} .
E) 7.64×106 N/m27.64 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
24
A 100 N100 \mathrm{~N} picture hangs from a nail in the wall. The diameter of the nail is 3.00 mm3.00 \mathrm{~mm} . The shear stress on the nail is

A) 1.62×107 N/m21.62 \times 10^{7} \mathrm{~N} / \mathrm{m} 2 .
B) 1.98×107 N/m21.98 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
C) 1.41×107 N/m21.41 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
D) 1.34×107 N/m21.34 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
E) 1.86×107 N/m21.86 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
25
A 150 N150 \mathrm{~N} picture hangs from a nail in the wall. The maximum shear stress the nail can sustain is 2.00×1062.00 \times 10^{6} N/m2\mathrm{N} / \mathrm{m}^{2} . The smallest diameter the nail can be is

A) 6.03 mm6.03 \mathrm{~mm} .
B) 8.22 mm8.22 \mathrm{~mm} .
C) 7.52 mm7.52 \mathrm{~mm} .
D) 9.77 mm9.77 \mathrm{~mm} .
E) 7.97 mm7.97 \mathrm{~mm} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
26
A cube of aluminum is at a depth of 1.00 km1.00 \mathrm{~km} under seawater whose density is 1,025 kg/m31,025 \mathrm{~kg} / \mathrm{m}^{3} . Atmospheric pressure is 101.3kPa101.3 \mathrm{kPa} . What is the volume stress on the cube? Use g=9.80 m/s2g=9.80 \mathrm{~m} / \mathrm{s}^{2} .

A) 1.34×107 Pa1.34 \times 10^{7} \mathrm{~Pa} .
B) 1.00×107 Pa1.00 \times 10^{7} \mathrm{~Pa} .
C) 2.60×107 Pa2.60 \times 10^{7} \mathrm{~Pa} .
D) 1.01×107 Pa1.01 \times 10^{7} \mathrm{~Pa} .
E) 3.01×107 Pa3.01 \times 10^{7} \mathrm{~Pa} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
27
Aball of aluminum is at a depth of 100.0 m100.0 \mathrm{~m} under water whose density is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} . Atmospheric pressure is 101.3kPa101.3 \mathrm{kPa} . What is the volume stress on the ball? Use g=9.80 m/s2\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2} .

A) 2.13×106 Pa2.13 \times 10^{6} \mathrm{~Pa} .
B) 1.08×106 Pa1.08 \times 10^{6} \mathrm{~Pa} .
C) 1.28×105 Pa1.28 \times 10^{5} \mathrm{~Pa} .
D) 2.33×106 Pa2.33 \times 10^{6} \mathrm{~Pa} .
E) 9.80×105 Pa9.80 \times 10^{5} \mathrm{~Pa} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
28
A cube of aluminum is at a depth of 1.00 km1.00 \mathrm{~km} under water whose density is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} . Atmospheric pressure is 101.3kPa101.3 \mathrm{kPa} . What is the volume stress on the cube? Use g=9.80 m/s2\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2} .

A) 1.00×107 Pa1.00 \times 10^{7} \mathrm{~Pa} .
B) 9.60×106 Pa9.60 \times 10^{6} \mathrm{~Pa} .
C) 9.70×106 Pa9.70 \times 10^{6} \mathrm{~Pa} .
D) 9.80×106 Pa9.80 \times 10^{6} \mathrm{~Pa} .
E) 9.90×106 Pa9.90 \times 10^{6} \mathrm{~Pa} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
29
A rod with a diameter of 2.00 mm2.00 \mathrm{~mm} projects 20.0 mm20.0 \mathrm{~mm} horizontally outward from a wall. A 10.0 N10.0 \mathrm{~N} weight is hung from the end of the rod and the rod deflects downward by 4.00×106 m4.00 \times 10-6 \mathrm{~m} . The shear modulus of the rod is

A) 1.42×1010 N/m21.42 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2} .
B) 2.28×1010 N/m22.28 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
C) 1.67×1010 N/m21.67 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
D) 1.99×1010 N/m21.99 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
E) 1.59×1010 N/m21.59 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
30
A nail with a diameter of 1.00 mm1.00 \mathrm{~mm} projects 25.0 mm25.0 \mathrm{~mm} horizontally outward from a wall. A 40.0 N40.0 \mathrm{~N} picture is hung from the end of the nail. If the shear modulus is 3.40×1010 N/m23.40 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} , then how much does the nail deflect downward?

A) 4.45×105 m4.45 \times 10^{-5} \mathrm{~m}
B) 3.74×105 m3.74 \times 10^{-5} \mathrm{~m}
C) 7.85×105 m7.85 \times 10^{-5} \mathrm{~m}
D) 4.78×105 m4.78 \times 10^{-5} \mathrm{~m}
E) 5.65×105 m5.65 \times 10^{-5} \mathrm{~m}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
31
A nail projects 25.0 mm25.0 \mathrm{~mm} horizontally outward from a wall. A 400 N400 \mathrm{~N} picture is hung from the end of the nail, and the nail deflects downward by 2.00×105 m2.00 \times 10^{-5} \mathrm{~m} . If the shear modulus is 3.40×1010 N/m23.40 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} , then what is the radius of the nail?

A) 2.16 mm2.16 \mathrm{~mm}
B) 2.65 mm2.65 \mathrm{~mm}
C) 1.86 mm1.86 \mathrm{~mm}
D) 2.44 mm2.44 \mathrm{~mm}
E) 1.60 mm1.60 \mathrm{~mm}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
32
A rod with a diameter of 2.00 mm2.00 \mathrm{~mm} projects 20.0 mm20.0 \mathrm{~mm} horizontally outward from a wall. A 2.00 N2.00 \mathrm{~N} coat is hung from the end of the rod and the rod deflects downward by 4.00×106 m4.00 \times 10^{-6} \mathrm{~m} . The shear stress on the rod is

A) 3.37×105 N/m23.37 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
B) 2.78×105 N/m22.78 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
C) 6.37×105 N/m26.37 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} .
D) 5.34×105 N/m25.34 \times 10^{5}\mathrm{~N} / \mathrm{m}^{2} .
E) 4.73×105 N/m24.73 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
33
An aluminum ball is subjected to a pressure of 7.00×106 Pa7.00 \times 10^{6} \mathrm{~Pa} . The volume strain is 1.0×104-1.0 \times 10^{-4} . What is the bulk modulus?

A) 8.1×1010 N/m28.1 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
B) 6.3×1010 N/m26.3 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
C) 5.8×1010 N/m25.8 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
D) 7.0×1010 N/m27.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
E) 6.1×1010 N/m26.1 \times 10^{10}\mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
34
A copper ball with a diameter of 5.00 cm5.00 \mathrm{~cm} is subjected to a pressure of 2.50×106 Pa2.50 \times 10^{6} \mathrm{~Pa} . The bulk modulus for copper is 1.40×1011 N/m21.40 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} . What is the magnitude of the volume strain?

A) 2.94×1052.94 \times 10-5
B) 1.79×1051.79 \times 10^{-5}
C) 3.21×1053.21 \times 10^{-5}
D) 2.55×1052.55 \times 10^{-5}
E) 2.09×1052.09 \times 10^{-5}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
35
A copper ball with a diameter of 5.00 cm5.00 \mathrm{~cm} is subjected to a pressure increase of 2.50×106 Pa2.50 \times 106 \mathrm{~Pa} . The bulk modulus for copper is 1.40×1011 N/m21.40 \times 10^{11}\mathrm{~N} / \mathrm{m}^{2} . What is the magnitude of the resulting change in the volume?

A) 1.70×103 cm31.70 \times 10^{-3} \mathrm{~cm}^{3}
B) 1.01×103 cm31.01 \times 10^{-3} \mathrm{~cm}^{3}
C) 1.58×103 cm31.58 \times 10^{-3} \mathrm{~cm}^{3}
D) 1.17×103 cm31.17 \times 10^{-3} \mathrm{~cm}^{3}
E) 1.20×103 cm31.20 \times 10^{-3} \mathrm{~cm}^{3}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
36
A steel ball with a diameter of 10 cm10 \mathrm{~cm} is subjected to a pressure that causes the volume of the ball to shrink by 0.01%0.01 \% . The bulk modulus for steel is 1.6×1011 N/m21.6 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} . What is the pressure?

A) 1.6×107 N/m21.6 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
B) 2.4×107 N/m22.4 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
C) 1.2×107 N/m21.2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
D) 1.9×107 N/m21.9 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
E) 2.1×107 N/m22.1 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
37
Seawater has a density of 1,025 kg/m31,025 \mathrm{~kg} / \mathrm{m}^{3} at the surface. The bulk modulus of seawater is 2.100×109 N/m22.100 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} . What is the density of seawater at a depth of 10.00 km10.00 \mathrm{~km} ? (Use g=9.8 m/s2g=9.8 \mathrm{~m} / \mathrm{s}^{2} and ignore any change in density with depth when calculating the pressure.)

A) 1230 kg/m31230 \mathrm{~kg} / \mathrm{m}^{3}
B) 1764 kg/m31764 \mathrm{~kg} / \mathrm{m}^{3}
C) 1076 kg/m31076 \mathrm{~kg} / \mathrm{m}^{3}
D) 1574 kg/m31574 \mathrm{~kg} / \mathrm{m}^{3}
E) 1973 kg/m31973 \mathrm{~kg} / \mathrm{m}^{3}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
38
An equation that describes the displacement of an object moving in simple harmonic motion is x(t)=(1.20 m)x(t)=(1.20 \mathrm{~m}) sin[(2.40rad/s)t]\sin [(2.40 \mathrm{rad} / \mathrm{s}) t] . What is the maximum velocity of the object?

A) 5.32 m/s5.32 \mathrm{~m} / \mathrm{s}
B) 4.82 m/s4.82 \mathrm{~m} / \mathrm{s}
C) 2.03 m/s2.03 \mathrm{~m} / \mathrm{s}
D) 3.68 m/s3.68 \mathrm{~m} / \mathrm{s}
E) 2.88 m/s2.88 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
39
A 4.00 kg4.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . The velocity is given by the expression v(t)=(12.8 cm/s)cos(ωt+π/4)v(t)=(12.8 \mathrm{~cm} / \mathrm{s}) \cos (\omega t+\pi / 4) . What is the maximum acceleration of the mass?

A) 13.6 cm/s213.6 \mathrm{~cm} / \mathrm{s}^{2}
B) 20.2 cm/s220.2 \mathrm{~cm} / \mathrm{s}^{2}
C) 19.2 cm/s219.2 \mathrm{~cm} / \mathrm{s}^{2}
D) 24.5 cm/s224.5 \mathrm{~cm} / \mathrm{s}^{2}
E) 16.2 cm/s216.2 \mathrm{~cm} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
40
A 4.00 kg4.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 12.0 cm/s12.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 4.00 cm4.00 \mathrm{~cm} , then what is the maximum velocity of the mass?

A) 15.5 cm/s15.5 \mathrm{~cm} / \mathrm{s}
B) 19.8 cm/s19.8 \mathrm{~cm} / \mathrm{s}
C) 11.5 cm/s11.5 \mathrm{~cm} / \mathrm{s}
D) 20.3 cm/s20.3 \mathrm{~cm} / \mathrm{s}
E) 13.4 cm/s13.4 \mathrm{~cm} / \mathrm{s}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
41
A 1.0 kg1.0 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.0 N/m9.0 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.0 cm/s4.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 2.0 cm2.0 \mathrm{~cm} , then what is the maximum kinetic energy of the mass?

A) 0.0020 J0.0020 \mathrm{~J}
B) 0.0078 J0.0078 \mathrm{~J}
C) 0.0026 J0.0026 \mathrm{~J}
D) 0.0023 J0.0023 \mathrm{~J}
E) 0.0012 J0.0012 \mathrm{~J}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
42
A 1.0 kg1.0 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.0 N/m9.0 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.0 cm/s4.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 2.0 cm2.0 \mathrm{~cm} , then what is the maximum elastic potential energy of the spring?

A) 0.0059 J0.0059 \mathrm{~J}
B) 0.0035 J0.0035 \mathrm{~J}
C) 0.0060 J0.0060 \mathrm{~J}
D) 0.0026 J0.0026 \mathrm{~J}
E) 0.0067 J0.0067 \mathrm{~J}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
43
A 1.0 kg1.0 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 0.0 cm/s0.0 \mathrm{~cm} / \mathrm{s} and the initial displacement is 2.0 cm2.0 \mathrm{~cm} , then what is the maximum kinetic energy of the mass?

A) 0.014 J0.014 \mathrm{~J}
B) 0.0018 J0.0018 \mathrm{~J}
C) 0.0075 J0.0075 \mathrm{~J}
D) 0.0012 J0.0012 \mathrm{~J}
E) 0.0090 J0.0090 \mathrm{~J}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
44
A 1.00 kg1.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.00 cm/s4.00 \mathrm{~cm} / \mathrm{s} and the initial displacement is 0.00 cm0.00 \mathrm{~cm} , then what is the maximum elastic potential energy of the spring?

A) 6.70×104 J6.70 \times 10-4 \mathrm{~J}
B) 7.50×104 J7.50 \times 10-4 \mathrm{~J}
C) 9.10×104 J9.10 \times 10^{-4} \mathrm{~J}
D) 5.00×104 J5.00 \times 10^{-4} \mathrm{~J}
E) 8.00×104 J8.00 \times 10^{-4} \mathrm{~J}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
45
A 1.00 kg1.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . If the initial velocity is 4.00 cm/s4.00 \mathrm{~cm} / \mathrm{s} and the initial displacement is 0.00 cm0.00 \mathrm{~cm} , then what is the amplitude of the oscillations?

A) 1.33 cm1.33 \mathrm{~cm}
B) 1.67 cm1.67 \mathrm{~cm}
C) 2.67 cm2.67 \mathrm{~cm}
D) 2.05 cm2.05 \mathrm{~cm}
E) 2.33 cm2.33 \mathrm{~cm}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
46
A 2.00 kg2.00 \mathrm{~kg} mass is connected to a spring with a spring constant of 9.00 N/m9.00 \mathrm{~N} / \mathrm{m} . The displacement is given by the expression x(t)=(12.0 cm)sin(ωt)x(t)=(12.0 \mathrm{~cm}) \sin (\omega t) . What is the period of the simple harmonic motion?

A) 4.75sec4.75 \mathrm{sec}
B) 4.27sec4.27 \mathrm{sec}
C) 3.36sec3.36 \mathrm{sec}
D) 2.96sec2.96 \mathrm{sec}
E) 3.95sec3.95 \mathrm{sec}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
47
A pendulum is made by attaching a 4.00 kg4.00 \mathrm{~kg} mass to the end of a thin, 75.0 cm75.0 \mathrm{~cm} long, massless rod. The period of (small amplitude) oscillations of the pendulum is

A) 1.74sec1.74 \mathrm{sec} .
B) 2.01sec2.01 \mathrm{sec} .
C) 1.04sec1.04 \mathrm{sec} .
D) 1.33sec1.33 \mathrm{sec} .
E) 2.45 sec.
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
48
A pendulum is made by attaching a 4.00 kg4.00 \mathrm{~kg} mass to the end of a thin, massless rod. The period of small-amplitude oscillations of the pendulum is 1.00sec1.00 \mathrm{sec} . What is the length of the rod?

A) 29.7 cm29.7 \mathrm{~cm}
B) 34.1 cm34.1 \mathrm{~cm}
C) 36.2 cm36.2 \mathrm{~cm}
D) 24.8 cm24.8 \mathrm{~cm}
E) 31.4 cm31.4 \mathrm{~cm}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
49
Consider a physical pendulum constructed by attaching a thin, massless rod to the center of a uniform disc of mass 500 g500 \mathrm{~g} and radius 4.00 cm4.00 \mathrm{~cm} . The disc has a moment of inertia of 112MR21 \frac{1}{2} \mathrm{MR}^{2} about an axis perpendicular to the plane of the disc, through its center. With the rod hung from one end (the pivot), the plane of the disc (attached to the other end) is vertical. If the rod has a length of 50.0 cm50.0 \mathrm{~cm} , then the period of (small amplitude) oscillations of the pendulum will be

A) 1.24sec1.24 \mathrm{sec} .
B) 1.74sec1.74 \mathrm{sec} .
C) 2.25 sec.
D) 1.42sec1.42 \mathrm{sec} .
E) 1.90sec1.90 \mathrm{sec}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
50
Consider a physical pendulum constructed by attaching a thin, massless rod to the center of a uniform disc of mass 1.00 kg1.00 \mathrm{~kg} and radius 40.0 cm40.0 \mathrm{~cm} . The disc has a moment of inertia of 1/2MR21 / 2 \mathrm{MR}^{2} about an axis perpendicular to the plane of the disc, through its center. With the rod hung from one end (the pivot), the plane of the disc (attached to the other end) is vertical. If the rod has a length of 50.0 cm50.0 \mathrm{~cm} , then the period of (small amplitude) oscillations of the pendulum will be

A) 1.63sec1.63 \mathrm{sec} .
B) 2.03sec2.03 \mathrm{sec} .
C) 1.89sec1.89 \mathrm{sec} .
D) 2.22 sec.
E) 1.32sec1.32 \mathrm{sec} .
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
51
Diatomic molecules such as H2\mathrm{H}_{2} and O2\mathrm{O}_{2} undergo simple harmonic motion with frequencies that obey Hooke's Law, with an effective mass equal to half the atomic mass. If the mass of a hydrogen atom is 1.67×1027 kg1.67 \times 10^{-27} \mathrm{~kg} and the observed frequency of oscillation is 1.25×1014 Hz1.25 \times 10^{14} \mathrm{~Hz} , what is the effective spring constant associated with the bond between the hydrogen atoms?

A) 515 N/m515 \mathrm{~N} / \mathrm{m}
B) 13 N/m13 \mathrm{~N} / \mathrm{m}
C) 164 N/m164 \mathrm{~N} / \mathrm{m}
D) 82 N/m82 \mathrm{~N} / \mathrm{m}
E) 1030 N/m1030 \mathrm{~N} / \mathrm{m}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
52
Diatomic molecules such as H2\mathrm{H}_{2} and O2\mathrm{O}_{2} undergo simple harmonic motion with frequencies that obey Hooke's Law, with an effective mass equal to half the atomic mass. If the mass of an oxygen atom is 2.66×1026 kg2.66 \times 10^{-26} \mathrm{~kg} and the observed frequency of oscillation is 4.66×1013 Hz4.66 \times 1013 \mathrm{~Hz} , what is the effective spring constant associated with the bond between the atoms in an oxygen molecule (O2)\left(\mathrm{O}_{2}\right) ?

A) 182 N/m182 \mathrm{~N} / \mathrm{m}
B) 1140 N/m1140 \mathrm{~N} / \mathrm{m}
C) 29 N/m29 \mathrm{~N} / \mathrm{m}
D) 116 N/m116 \mathrm{~N} / \mathrm{m}
E) 2280 N/m2280 \mathrm{~N} / \mathrm{m}
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
53
Diatomic molecules such as H2\mathrm{H}_{2} and F2\mathrm{F}_{2} undergo simple harmonic motion with frequencies that obey Hooke's Law, with an effective mass equal to half the atomic mass. If the mass of a hydrogen atom is 1.627×10271.627 \times 10^{-27} kg\mathrm{kg} and the mass of a fluorine atom is 3.17×1026 kg3.17 \times 10^{-26} \mathrm{~kg} , what is the approximate ratio of the oscillation frequency of H2\mathrm{H}_{2} to that of F2\mathrm{F}_{2} , assuming the bond strengths are the same?

A) 38
B) 9.5
C) 360
D) 19
E) 4.4
Unlock Deck
Unlock for access to all 53 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 53 flashcards in this deck.