Deck 11: Waves

Full screen (f)
exit full mode
Question
intensity of the sound wave from an airplane is 1.0×102 W/m21.0 \times 10^{2} \mathrm{~W} / \mathrm{m}^{2} at 5.0 m5.0 \mathrm{~m} . What is the intensity at 100 m100 \mathrm{~m} ?

A) 0.25 mW/m20.25 \mathrm{~mW} / \mathrm{m}^{2}
B) 0.25 W/m20.25 \mathrm{~W} / \mathrm{m}^{2}
C) 0.53 W/m20.53 \mathrm{~W} / \mathrm{m}^{2}
D) 5.0 W/m25.0 \mathrm{~W} / \mathrm{m}^{2}
Use Space or
up arrow
down arrow
to flip the card.
Question
sound source of power 100 watts radiates sound uniformly in all directions. The intensity of the sound at a distance of 4.00 m4.00 \mathrm{~m} is

A) 0.497 W/m20.497 \mathrm{~W} / \mathrm{m}^{2} .
B) 0.301 W/m20.301 \mathrm{~W} / \mathrm{m}^{2} .
C) 0.535 W/m20.535 \mathrm{~W} / \mathrm{m}^{2} .
D) 0.353 W/m20.353 \mathrm{~W} / \mathrm{m}^{2} .
E) 0.621 W/m20.621 \mathrm{~W} / \mathrm{m}^{2} .
Question
sound source of power 150 watts radiates sound uniformly in all directions. The intensity of the sound at a distance of 4.00 m4.00 \mathrm{~m} is

A) 0.403 W/m20.403 \mathrm{~W} / \mathrm{m}^{2} .
B) 0.389 W/m20.389 \mathrm{~W} / \mathrm{m}^{2} .
C) 0.582 W/m20.582 \mathrm{~W} / \mathrm{m}^{2} .
D) 0.746 W/m20.746 \mathrm{~W} / \mathrm{m}^{2} .
E) 0.927 W/m20.927 \mathrm{~W} / \mathrm{m}^{2} .
Question
string with a length of 2.50 m2.50 \mathrm{~m} has a mass of 5.00 g5.00 \mathrm{~g} . The velocity of wave propagation along the string is 210 m/s210 \mathrm{~m} / \mathrm{s} . The tension of the stretched string is

A) 66.7 N66.7 \mathrm{~N} .
B) 70.2 N70.2 \mathrm{~N} .
C) 88.2 N88.2 \mathrm{~N} .
D) 75.0 N75.0 \mathrm{~N} .
E) 60.2 N60.2 \mathrm{~N} .
Question
string on a violin is stretched between two points 20.00 cm20.00 \mathrm{~cm} apart with a tension of 120.0 N120.0 \mathrm{~N} . The mass/length of the string is 0.002000 kg/m0.002000 \mathrm{~kg} / \mathrm{m} . The frequency of the 2nd 2^{\text {nd }} overtone is

A) 1,837 Hz1,837 \mathrm{~Hz} .
B) 1,502 Hz1,502 \mathrm{~Hz} .
C) 2,237 Hz2,237 \mathrm{~Hz} .
D) 2,568 Hz2,568 \mathrm{~Hz} .
E) 3,250 Hz3,250 \mathrm{~Hz} .
Question
Visible light consists of electromagnetic waves with wavelengths (in air) in the range 400700 nm400-700 \mathrm{~nm} . The speed of light in air is 3.0×108 m/s3.0 \times 108 \mathrm{~m} / \mathrm{s} . What are the frequencies of visible light?

A) 1.33×1014 Hz1.33 \times 1014 \mathrm{~Hz} to 2.33×1014 Hz2.33 \times 1014 \mathrm{~Hz}
B) 4.29×1012 Hz4.29 \times 1012 \mathrm{~Hz} to 7.50×1012 Hz7.50 \times 1012 \mathrm{~Hz}
C) 1.33×1012 Hz1.33 \times 1012 \mathrm{~Hz} to 2.33×1012 Hz2.33 \times 10^{12} \mathrm{~Hz}
D) 4.29×1014 Hz4.29 \times 10^{14} \mathrm{~Hz} to 7.50×1014 Hz7.50 \times 10^{14} \mathrm{~Hz}
Question
transverse wave travels at 230.0 m/s230.0 \mathrm{~m} / \mathrm{s} along the yy -axis. If the frequency of the periodic vibrations of the wave is 390.0 Hz390.0 \mathrm{~Hz} , then what is the wavelength of the wave?

A) 58.97 cm58.97 \mathrm{~cm}
B) 36.76 cm36.76 \mathrm{~cm}
C) 40.89 cm40.89 \mathrm{~cm}
D) 68.97 cm68.97 \mathrm{~cm}
E) 47.23 cm47.23 \mathrm{~cm}
Question
frequency of a periodic wave is 340 Hz340 \mathrm{~Hz} . The period of the vibration motion of the wave is

A) 4.25 milliseconds.
B) 2.94 milliseconds.
C) 3.94 milliseconds.
D) 2.56 milliseconds.
E) 3.55 milliseconds.
Question
wavelength of a periodic wave is 0.750 m0.750 \mathrm{~m} . If the frequency is 425 Hz425 \mathrm{~Hz} , then what is the angular frequency ω\omega of the wave?

A) 5.44×103rad/s5.44 \times 10^{3} \mathrm{rad} / \mathrm{s}
B) 4.21×103rad/s4.21 \times 10^{3} \mathrm{rad} / \mathrm{s}
C) 3.76×103rad/s3.76 \times 10^{3} \mathrm{rad} / \mathrm{s}
D) 5.03×103rad/s5.03 \times 103 \mathrm{rad} / \mathrm{s}
E) 2.67×103rad/s2.67 \times 10^{3} \mathrm{rad} / \mathrm{s}
Question
wavelength of a periodic wave is 0.800 m0.800 \mathrm{~m} . If the frequency is 400 Hz400 \mathrm{~Hz} , then what is the wavenumber kk of the wave?

A) 5.98 m15.98 \mathrm{~m}^{-1}
B) 8.56 m18.56 \mathrm{~m}^{-1}
C) 7.85 m17.85 \mathrm{~m}^{-1}
D) 6.35 m16.35 \mathrm{~m}^{-1}
E) 7.02 m17.02 \mathrm{~m}^{-1}
Question
wavelength of a periodic wave is 0.750 m0.750 \mathrm{~m} . If the frequency is 365 Hz365 \mathrm{~Hz} , then what is the angular frequency ω\omega of the wave?

A) 3.10×103rad/s3.10 \times 10^{3} \mathrm{rad} / \mathrm{s}
B) 2.98×103rad/s2.98 \times 10^{3} \mathrm{rad} / \mathrm{s}
C) 3.87×103rad/s3.87 \times 10^{3} \mathrm{rad} / \mathrm{s}
D) 2.29×103rad/s2.29 \times 10^{3} \mathrm{rad} / \mathrm{s}
E) 1.75×103rad/s1.75 \times 10^{3} \mathrm{rad} / \mathrm{s}
Question
wavelength of a periodic wave is 0.500 m0.500 \mathrm{~m} . If the frequency is 400 Hz400 \mathrm{~Hz} , then what is the wavenumber kk of the wave?

A) 21.0 m121.0 \mathrm{~m}^{-1}
B) 25.9 m125.9 \mathrm{~m}^{-1}
C) 12.6 m112.6 \mathrm{~m}^{-1}
D) 18.4 m118.4 \mathrm{~m}^{-1}
E) 14.8 m114.8 \mathrm{~m}^{-1}
Question
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation x(x,t)=2.1 cmcos(2000rad/st40 m1x)\mathrm{x}(\mathrm{x}, \mathrm{t})=2.1 \mathrm{~cm} \cos \left(2000 \mathrm{rad} / \mathrm{s} \mathrm{t}-40 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of propagation of the wave?

A) the y-y direction
B) the x-x direction
C) the +x+x direction
D) the +y+\mathrm{y} direction
Question
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation x(x,t)=2.1 cmcos(2000rad/st40 m1x)\mathrm{x}(\mathrm{x}, \mathrm{t})=2.1 \mathrm{~cm} \cos \left(2000 \mathrm{rad} / \mathrm{s} \mathrm{t}-40 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of motion of a point on the spring due to the wave?

A) the ±z\pm \mathrm{z} direction
B) the ±x\pm \mathrm{x} direction
C) the \textbackslash pm y direction
Question
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation x(x,t)=\mathrm{x}(\mathrm{x}, \mathrm{t})= 2.10 cmcos(2000rad/st+40.0 m1x)2.10 \mathrm{~cm} \cos \left(2000 \mathrm{rad} / \mathrm{s} t+40.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the velocity of the wave?

A) 0.02 m/s0.02 \mathrm{~m} / \mathrm{s} in the +x+x direction
B) 50 m/s50 \mathrm{~m} / \mathrm{s} in the x-x direction
C) 0.02 m/s0.02 \mathrm{~m} / \mathrm{s} in the x-x direction
D) 50 m/s50 \mathrm{~m} / \mathrm{s} in the +x+x direction
Question
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation z(z,t)=\mathrm{z}(\mathrm{z}, \mathrm{t})= 1.2 cmcos(1800rad/st+60 m1z)1.2 \mathrm{~cm} \cos \left(1800 \mathrm{rad} / \mathrm{s} t+60 \mathrm{~m}^{-1} \mathrm{z}\right) . What are the wavenumber and direction of propagation of the wave?

A) 60 m160 \mathrm{~m}^{-1} ; traveling in the +z+\mathrm{z} direction
B) 60 m160 \mathrm{~m}^{-1} ; traveling in the z-\mathrm{z} direction
C) 60 m160 \mathrm{~m}^{-1} ; traveling in the x-x direction
D) 60 m160 \mathrm{~m}^{-1} ; traveling in the +x+x direction
Question
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{st}-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of the vibration of the wave?

A) the x\mathrm{x} direction
B) the z\mathrm{z} direction
C) the yy direction
Question
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{st}-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of the velocity of the wave?

A) the z-\mathrm{z} direction
B) the x-x direction
C) the +x+x direction
D) the y-y direction
E) the +y+y direction
F) the +z+\mathrm{z} direction
Question
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{s} t-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the velocity of the wave?

A) 167 m/s167 \mathrm{~m} / \mathrm{s} in the x-\mathrm{x} direction
B) 450 m/s450 \mathrm{~m} / \mathrm{s} in the y-y direction
C) 333 m/s333 \mathrm{~m} / \mathrm{s} in the +y+\mathrm{y} direction
D) 333 m/s333 \mathrm{~m} / \mathrm{s} in the +x+x direction
E) 167 m/s167 \mathrm{~m} / \mathrm{s} in the +x+x direction
Question
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{s} t-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What are the wavenumber kk and direction of propagation of the wave?

A) 15.0 m115.0 \mathrm{~m}^{-1} ; traveling in the +x+\mathrm{x} direction
B) 30.0 m130.0 \mathrm{~m}^{-1} ; traveling in the +y+\mathrm{y} direction
C) 15.0 m115.0 \mathrm{~m}^{-1} ; traveling in the x-\mathrm{x} direction
D) 45.0 m145.0 \mathrm{~m}^{-1} ; traveling in the +x+x direction
E) 30.0 m130.0 \mathrm{~m}^{-1} ; traveling in the y-\mathrm{y} direction
Question
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{st}-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the frequency of the vibration of the wave?

A) 398 Hz398 \mathrm{~Hz}
B) 422 Hz422 \mathrm{~Hz}
C) 302 Hz302 \mathrm{~Hz}
D) 490 Hz490 \mathrm{~Hz}
E) 467 Hz467 \mathrm{~Hz}
Question
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the direction of the vibration of the wave?

A) the yy direction
B) the xx direction
C) the zz direction
Question
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the direction of the velocity of the wave?

A) the z\mathrm{z} direction
B) the y direction
C) the t\mathrm{t} direction
D) the x\mathrm{x} direction
Question
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the velocity of the wave?

A) 125 m/s125 \mathrm{~m} / \mathrm{s} in the y-\mathrm{y} direction
B) 250 m/s250 \mathrm{~m} / \mathrm{s} in the z-\mathrm{z} direction
C) 125 m/s125 \mathrm{~m} / \mathrm{s} in the +z+\mathrm{z} direction
D) 250 m/s250 \mathrm{~m} / \mathrm{s} in the y-\mathrm{y} direction
E) 125 m/s125 \mathrm{~m} / \mathrm{s} in the +y+\mathrm{y} direction
Question
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{st}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What are the wavenumber kk and direction of propagation of the wave?

A) 20 m120 \mathrm{~m}^{-1} ; traveling in the +z+\mathrm{z} direction
B) 10 m110 \mathrm{~m}^{-1} ; traveling in the y-\mathrm{y} direction
C) 10 m110 \mathrm{~m}^{-1} ; traveling in the +y+\mathrm{y} direction
D) 20 m120 \mathrm{~m}^{-1} ; traveling in the z-\mathrm{z} direction
E) 10 m110 \mathrm{~m}^{-1} ; traveling in the z-\mathrm{z} direction
Question
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} t+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the frequency of the vibration of the wave?

A) 240 Hz240 \mathrm{~Hz}
B) 199 Hz199 \mathrm{~Hz}
C) 289 Hz289 \mathrm{~Hz}
D) 319 Hz319 \mathrm{~Hz}
E) 150 Hz150 \mathrm{~Hz}
Question
transverse periodic wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}-10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . Another transverse wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1x)y(x, t)=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=3.0 cmsin(1,500rad/st+10.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{st}+10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=3.0 cmsin(1,500rad/s10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s}-10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=3.0 cmcos(1,500rad/st)sin(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \cos (1,500 \mathrm{rad} / \mathrm{s} t) \sin \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=3.0 cmsin(1,500rad/st)cos(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin (1,500 \mathrm{rad} / \mathrm{st}) \cos \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Question
transverse periodic wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1x)y(x, t)=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . Another transverse wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st+10.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=3.0 cmcos(1,500rad/st)sin(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \cos (1,500 \mathrm{rad} / \mathrm{s} t) \sin \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=3.0 cmsin(1,500rad/st)cos(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin (1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=3.0 cmsin(1,500rad/st10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=3.0 cmsin(1,500rad/st+10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{st}+10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Question
transverse periodic wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1y(x, t)=-1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1}\right. x)\mathrm{x}) . Another transverse wave is represented by the equation y(x,t)=+1.50 cmsin(1,500rad/st+10.0 m1\mathrm{y}(\mathrm{x}, \mathrm{t})=+1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1}\right. x)\mathrm{x}) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=3.0 cmcos(1,500rad/st)sin(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \cos (1,500 \mathrm{rad} / \mathrm{st}) \sin \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=3.0 cmsin(1,500rad/st10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=3.0 cmsin(1,500rad/st)cos(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin (1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=3.0 cmsin(1,500rad/st+10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t+10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Question
transverse periodic wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . Another transverse wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=4.0 cmsin(1,200rad/st)cos(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \sin (1,200 \mathrm{rad} / \mathrm{st}) \cos \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=4.0 cmcos(1,200rad/st+20.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=4.0 \mathrm{~cm} \cos \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=4.0 cmcos(1,200rad/st)sin(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} t) \sin \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(z,t)=4.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=4.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right)
Question
transverse periodic wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1z)y(z, t)=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} t-20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . Another transverse wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st+20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=4.0 cmcos(1,200rad/st+20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=4.0 cmsin(1,200rad/st)cos(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \sin (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(z,t)=4.0 cmsin(1,200rad/st20.0 m1z)y(z, t)=4.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right)
D) y(x,t)=4.0 cmcos(1,200rad/st)sin(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} t) \sin \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Question
transverse periodic wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1x)y(z, t)=-2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} t-20.0 \mathrm{~m}^{-1} \mathrm{x}\right) . Another transverse wave is represented by the equation y(z,t)=+2.0 cmsin(1,200rad/st+20.0 m1z)y(z, t)=+2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} t+20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) y(z,t)=4.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=4.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right)
B) y(x,t)=4.0 cmcos(1,200rad/st)sin(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} t) \sin \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=4.0 cmcos(1,200rad/st+20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos \left(1,200 \mathrm{rad} / \mathrm{s} t+20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=4.0 cmsin(1,200rad/st)cos(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \sin (1,200 \mathrm{rad} / \mathrm{st}) \cos \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Question
following figure is a graph of a wave at a fixed position.
 <strong>following figure is a graph of a wave at a fixed position.   The following figure is a graph of the same wave at a fixed time.  </strong> A)  450 \mathrm{~m} / \mathrm{s}  B)  150 \mathrm{~m} / \mathrm{s}  C)  250 \mathrm{~m} / \mathrm{s}  D)  200 \mathrm{~m} / \mathrm{s}  E)  300 \mathrm{~m} / \mathrm{s}  <div style=padding-top: 35px>
The following figure is a graph of the same wave at a fixed time.
 <strong>following figure is a graph of a wave at a fixed position.   The following figure is a graph of the same wave at a fixed time.  </strong> A)  450 \mathrm{~m} / \mathrm{s}  B)  150 \mathrm{~m} / \mathrm{s}  C)  250 \mathrm{~m} / \mathrm{s}  D)  200 \mathrm{~m} / \mathrm{s}  E)  300 \mathrm{~m} / \mathrm{s}  <div style=padding-top: 35px>

A) 450 m/s450 \mathrm{~m} / \mathrm{s}
B) 150 m/s150 \mathrm{~m} / \mathrm{s}
C) 250 m/s250 \mathrm{~m} / \mathrm{s}
D) 200 m/s200 \mathrm{~m} / \mathrm{s}
E) 300 m/s300 \mathrm{~m} / \mathrm{s}
Question
wave is represented by the equation y(x,t)=3.2 cmsin(1000rad/st50 m1x)y(x, t)=3.2 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t-50 \mathrm{~m}^{-1} \mathrm{x}\right) . Another wave, with the same wavelength and frequency, has an amplitude of 4.2 cm4.2 \mathrm{~cm} . If the two waves interfere constructively, then which equation could represent the superposition of the two waves?

A) y(x,t)=7.4 cmsin(1000rad/st+50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \mathrm{sin}\left(1000 \mathrm{rad} / \mathrm{st}+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=1.0 cmsin(1000rad/st+50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=1.0 cmsin(1000rad/st50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=7.4 cmsin(1000rad/st50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Question
wave is represented by the equation y(x,t)=3.2 cmsin(1000rad/st50 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=3.2 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50 \mathrm{~m}^{-1} \mathrm{x}\right) . Another wave, with the same wavelength and frequency, has an amplitude of 4.2 cm4.2 \mathrm{~cm} . If the two waves interfere destructively, then which equation could represent the superposition of the two waves?

A) y(x,t)=7.4 cmsin(1000rad/st50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \mathrm{sin}\left(1000 \mathrm{rad} / \mathrm{s} t-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=1.0 cmsin(1000rad/st+50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=7.4 cmsin(1000rad/st+50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=1.0 cmsin(1000rad/st50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Question
longitudinal wave is represented by the equation z(z,t)=2.0 cmsin(1,200rad/st20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=-2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20 \mathrm{~m}^{-1} \mathrm{z}\right) . Another longitudinal wave is represented by the equation z(z,t)=+2.0 cmsin(1,200rad/st+20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=+2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) z(z,t)=+4.0 cmcos(1,200rad/st)cos(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=+4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(20 \mathrm{~m}^{-1} \mathrm{z}\right)
B) z(z,t)=+4.0 cmcos(1,200rad/st)sin(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=+4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \sin \left(20 \mathrm{~m}^{-1} \mathrm{z}\right)
C) z(z,t)=2.0 cmcos(1,200rad/st)sin(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=-2.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \sin \left(20 \mathrm{~m}^{-1} \mathrm{z}\right)
D) z(z,t)=4.0 cmcos(1,200rad/st)sin(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=-4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \sin (20 \mathrm{~m}-1 \mathrm{z})
Question
speakers are emitting coherent sound waves at a frequency of 440 Hz440 \mathrm{~Hz} . The waves are emitted in phase. If the speed of sound is 343 m/s343 \mathrm{~m} / \mathrm{s} , and it is observed that no sound is heard 17.2 m17.2 \mathrm{~m} from one speaker, which of the following is a possible distance to the second speaker?

A) 14.5 m14.5 \mathrm{~m}
B) 18.0 m18.0 \mathrm{~m}
C) 18.8 m18.8 \mathrm{~m}
D) 17.2 m17.2 \mathrm{~m}
E) 19.6 m19.6 \mathrm{~m}
F) 16.5 m16.5 \mathrm{~m}
Question
cello plays a note of frequency 220 Hz220 \mathrm{~Hz} using a length LL of one of its strings. What length of the same string must be used in order to play a fundamental frequency of 256 Hz256 \mathrm{~Hz} ? Assume in each case that the note played is the fundamental frequency of the string at the given length and that the tension T\mathrm{T} and mass per unit length are not changed when selecting a different length of the same string.

A) 1.72 L1.72 \mathrm{~L}
B) 0.86 L0.86 \mathrm{~L}
C) 0.43 L0.43 \mathrm{~L}
D) 0.58 L0.58 \mathrm{~L}
E) 2.32 L2.32 \mathrm{~L}
F) 1.16 L1.16 \mathrm{~L}
Question
is the mass of a string that is 17 cm17 \mathrm{~cm} long and has a fundamental frequency of 792 Hz792 \mathrm{~Hz} when under a tension of 1.7kN1.7 \mathrm{kN} ?

A) 6.4 g6.4 \mathrm{~g}
B) 3.2 g3.2 \mathrm{~g}
C) 4.0 g4.0 \mathrm{~g}
D) 64 g64 \mathrm{~g}
E) 1.6 g1.6 \mathrm{~g}
F) 32 g32 \mathrm{~g}
Question
sound wave radiates from a source uniformly in all directions. If the power of the sound source is 200 watts, then the intensity of the sound wave 100 m100 \mathrm{~m} from the source is

A) 2.2 mW/m22.2 \mathrm{~mW} / \mathrm{m}^{2}
B) 1.2 mW/m21.2 \mathrm{~mW} / \mathrm{m}^{2} .
C) 1.8 mW/m21.8 \mathrm{~mW} / \mathrm{m}^{2} .
D) 1.6 mW/m21.6 \mathrm{~mW} / \mathrm{m}^{2} .
E) 2.0 mW/m22.0 \mathrm{~mW} / \mathrm{m}^{2} .
Question
speed of sound in water is 4.3 times the speed of sound in air. A whistle produces a sound wave in air with a frequency f0\mathrm{f}_{0} . When this sound wave enters the water, its frequency will be

A) f0/4.3\mathrm{f}_{0} / 4.3 .
B) 4.3f04.3 \mathrm{f}_{0} .
C) f0\mathrm{f}_{0} .
D) not enough information
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/41
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Waves
1
intensity of the sound wave from an airplane is 1.0×102 W/m21.0 \times 10^{2} \mathrm{~W} / \mathrm{m}^{2} at 5.0 m5.0 \mathrm{~m} . What is the intensity at 100 m100 \mathrm{~m} ?

A) 0.25 mW/m20.25 \mathrm{~mW} / \mathrm{m}^{2}
B) 0.25 W/m20.25 \mathrm{~W} / \mathrm{m}^{2}
C) 0.53 W/m20.53 \mathrm{~W} / \mathrm{m}^{2}
D) 5.0 W/m25.0 \mathrm{~W} / \mathrm{m}^{2}
0.25 W/m20.25 \mathrm{~W} / \mathrm{m}^{2}
2
sound source of power 100 watts radiates sound uniformly in all directions. The intensity of the sound at a distance of 4.00 m4.00 \mathrm{~m} is

A) 0.497 W/m20.497 \mathrm{~W} / \mathrm{m}^{2} .
B) 0.301 W/m20.301 \mathrm{~W} / \mathrm{m}^{2} .
C) 0.535 W/m20.535 \mathrm{~W} / \mathrm{m}^{2} .
D) 0.353 W/m20.353 \mathrm{~W} / \mathrm{m}^{2} .
E) 0.621 W/m20.621 \mathrm{~W} / \mathrm{m}^{2} .
0.497 W/m20.497 \mathrm{~W} / \mathrm{m}^{2} .
3
sound source of power 150 watts radiates sound uniformly in all directions. The intensity of the sound at a distance of 4.00 m4.00 \mathrm{~m} is

A) 0.403 W/m20.403 \mathrm{~W} / \mathrm{m}^{2} .
B) 0.389 W/m20.389 \mathrm{~W} / \mathrm{m}^{2} .
C) 0.582 W/m20.582 \mathrm{~W} / \mathrm{m}^{2} .
D) 0.746 W/m20.746 \mathrm{~W} / \mathrm{m}^{2} .
E) 0.927 W/m20.927 \mathrm{~W} / \mathrm{m}^{2} .
0.746 W/m20.746 \mathrm{~W} / \mathrm{m}^{2} .
4
string with a length of 2.50 m2.50 \mathrm{~m} has a mass of 5.00 g5.00 \mathrm{~g} . The velocity of wave propagation along the string is 210 m/s210 \mathrm{~m} / \mathrm{s} . The tension of the stretched string is

A) 66.7 N66.7 \mathrm{~N} .
B) 70.2 N70.2 \mathrm{~N} .
C) 88.2 N88.2 \mathrm{~N} .
D) 75.0 N75.0 \mathrm{~N} .
E) 60.2 N60.2 \mathrm{~N} .
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
5
string on a violin is stretched between two points 20.00 cm20.00 \mathrm{~cm} apart with a tension of 120.0 N120.0 \mathrm{~N} . The mass/length of the string is 0.002000 kg/m0.002000 \mathrm{~kg} / \mathrm{m} . The frequency of the 2nd 2^{\text {nd }} overtone is

A) 1,837 Hz1,837 \mathrm{~Hz} .
B) 1,502 Hz1,502 \mathrm{~Hz} .
C) 2,237 Hz2,237 \mathrm{~Hz} .
D) 2,568 Hz2,568 \mathrm{~Hz} .
E) 3,250 Hz3,250 \mathrm{~Hz} .
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
6
Visible light consists of electromagnetic waves with wavelengths (in air) in the range 400700 nm400-700 \mathrm{~nm} . The speed of light in air is 3.0×108 m/s3.0 \times 108 \mathrm{~m} / \mathrm{s} . What are the frequencies of visible light?

A) 1.33×1014 Hz1.33 \times 1014 \mathrm{~Hz} to 2.33×1014 Hz2.33 \times 1014 \mathrm{~Hz}
B) 4.29×1012 Hz4.29 \times 1012 \mathrm{~Hz} to 7.50×1012 Hz7.50 \times 1012 \mathrm{~Hz}
C) 1.33×1012 Hz1.33 \times 1012 \mathrm{~Hz} to 2.33×1012 Hz2.33 \times 10^{12} \mathrm{~Hz}
D) 4.29×1014 Hz4.29 \times 10^{14} \mathrm{~Hz} to 7.50×1014 Hz7.50 \times 10^{14} \mathrm{~Hz}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
7
transverse wave travels at 230.0 m/s230.0 \mathrm{~m} / \mathrm{s} along the yy -axis. If the frequency of the periodic vibrations of the wave is 390.0 Hz390.0 \mathrm{~Hz} , then what is the wavelength of the wave?

A) 58.97 cm58.97 \mathrm{~cm}
B) 36.76 cm36.76 \mathrm{~cm}
C) 40.89 cm40.89 \mathrm{~cm}
D) 68.97 cm68.97 \mathrm{~cm}
E) 47.23 cm47.23 \mathrm{~cm}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
8
frequency of a periodic wave is 340 Hz340 \mathrm{~Hz} . The period of the vibration motion of the wave is

A) 4.25 milliseconds.
B) 2.94 milliseconds.
C) 3.94 milliseconds.
D) 2.56 milliseconds.
E) 3.55 milliseconds.
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
9
wavelength of a periodic wave is 0.750 m0.750 \mathrm{~m} . If the frequency is 425 Hz425 \mathrm{~Hz} , then what is the angular frequency ω\omega of the wave?

A) 5.44×103rad/s5.44 \times 10^{3} \mathrm{rad} / \mathrm{s}
B) 4.21×103rad/s4.21 \times 10^{3} \mathrm{rad} / \mathrm{s}
C) 3.76×103rad/s3.76 \times 10^{3} \mathrm{rad} / \mathrm{s}
D) 5.03×103rad/s5.03 \times 103 \mathrm{rad} / \mathrm{s}
E) 2.67×103rad/s2.67 \times 10^{3} \mathrm{rad} / \mathrm{s}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
10
wavelength of a periodic wave is 0.800 m0.800 \mathrm{~m} . If the frequency is 400 Hz400 \mathrm{~Hz} , then what is the wavenumber kk of the wave?

A) 5.98 m15.98 \mathrm{~m}^{-1}
B) 8.56 m18.56 \mathrm{~m}^{-1}
C) 7.85 m17.85 \mathrm{~m}^{-1}
D) 6.35 m16.35 \mathrm{~m}^{-1}
E) 7.02 m17.02 \mathrm{~m}^{-1}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
11
wavelength of a periodic wave is 0.750 m0.750 \mathrm{~m} . If the frequency is 365 Hz365 \mathrm{~Hz} , then what is the angular frequency ω\omega of the wave?

A) 3.10×103rad/s3.10 \times 10^{3} \mathrm{rad} / \mathrm{s}
B) 2.98×103rad/s2.98 \times 10^{3} \mathrm{rad} / \mathrm{s}
C) 3.87×103rad/s3.87 \times 10^{3} \mathrm{rad} / \mathrm{s}
D) 2.29×103rad/s2.29 \times 10^{3} \mathrm{rad} / \mathrm{s}
E) 1.75×103rad/s1.75 \times 10^{3} \mathrm{rad} / \mathrm{s}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
12
wavelength of a periodic wave is 0.500 m0.500 \mathrm{~m} . If the frequency is 400 Hz400 \mathrm{~Hz} , then what is the wavenumber kk of the wave?

A) 21.0 m121.0 \mathrm{~m}^{-1}
B) 25.9 m125.9 \mathrm{~m}^{-1}
C) 12.6 m112.6 \mathrm{~m}^{-1}
D) 18.4 m118.4 \mathrm{~m}^{-1}
E) 14.8 m114.8 \mathrm{~m}^{-1}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
13
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation x(x,t)=2.1 cmcos(2000rad/st40 m1x)\mathrm{x}(\mathrm{x}, \mathrm{t})=2.1 \mathrm{~cm} \cos \left(2000 \mathrm{rad} / \mathrm{s} \mathrm{t}-40 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of propagation of the wave?

A) the y-y direction
B) the x-x direction
C) the +x+x direction
D) the +y+\mathrm{y} direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
14
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation x(x,t)=2.1 cmcos(2000rad/st40 m1x)\mathrm{x}(\mathrm{x}, \mathrm{t})=2.1 \mathrm{~cm} \cos \left(2000 \mathrm{rad} / \mathrm{s} \mathrm{t}-40 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of motion of a point on the spring due to the wave?

A) the ±z\pm \mathrm{z} direction
B) the ±x\pm \mathrm{x} direction
C) the \textbackslash pm y direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
15
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation x(x,t)=\mathrm{x}(\mathrm{x}, \mathrm{t})= 2.10 cmcos(2000rad/st+40.0 m1x)2.10 \mathrm{~cm} \cos \left(2000 \mathrm{rad} / \mathrm{s} t+40.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the velocity of the wave?

A) 0.02 m/s0.02 \mathrm{~m} / \mathrm{s} in the +x+x direction
B) 50 m/s50 \mathrm{~m} / \mathrm{s} in the x-x direction
C) 0.02 m/s0.02 \mathrm{~m} / \mathrm{s} in the x-x direction
D) 50 m/s50 \mathrm{~m} / \mathrm{s} in the +x+x direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
16
longitudinal wave travels on a slinky or any long spring. The wave is represented by the equation z(z,t)=\mathrm{z}(\mathrm{z}, \mathrm{t})= 1.2 cmcos(1800rad/st+60 m1z)1.2 \mathrm{~cm} \cos \left(1800 \mathrm{rad} / \mathrm{s} t+60 \mathrm{~m}^{-1} \mathrm{z}\right) . What are the wavenumber and direction of propagation of the wave?

A) 60 m160 \mathrm{~m}^{-1} ; traveling in the +z+\mathrm{z} direction
B) 60 m160 \mathrm{~m}^{-1} ; traveling in the z-\mathrm{z} direction
C) 60 m160 \mathrm{~m}^{-1} ; traveling in the x-x direction
D) 60 m160 \mathrm{~m}^{-1} ; traveling in the +x+x direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
17
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{st}-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of the vibration of the wave?

A) the x\mathrm{x} direction
B) the z\mathrm{z} direction
C) the yy direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
18
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{st}-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the direction of the velocity of the wave?

A) the z-\mathrm{z} direction
B) the x-x direction
C) the +x+x direction
D) the y-y direction
E) the +y+y direction
F) the +z+\mathrm{z} direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
19
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{s} t-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the velocity of the wave?

A) 167 m/s167 \mathrm{~m} / \mathrm{s} in the x-\mathrm{x} direction
B) 450 m/s450 \mathrm{~m} / \mathrm{s} in the y-y direction
C) 333 m/s333 \mathrm{~m} / \mathrm{s} in the +y+\mathrm{y} direction
D) 333 m/s333 \mathrm{~m} / \mathrm{s} in the +x+x direction
E) 167 m/s167 \mathrm{~m} / \mathrm{s} in the +x+x direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
20
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{s} t-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What are the wavenumber kk and direction of propagation of the wave?

A) 15.0 m115.0 \mathrm{~m}^{-1} ; traveling in the +x+\mathrm{x} direction
B) 30.0 m130.0 \mathrm{~m}^{-1} ; traveling in the +y+\mathrm{y} direction
C) 15.0 m115.0 \mathrm{~m}^{-1} ; traveling in the x-\mathrm{x} direction
D) 45.0 m145.0 \mathrm{~m}^{-1} ; traveling in the +x+x direction
E) 30.0 m130.0 \mathrm{~m}^{-1} ; traveling in the y-\mathrm{y} direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
21
transverse periodic wave is represented by the equation y(x,t)=2.50 cmcos(2,500rad/st15.0 m1x)y(x, t)=2.50 \mathrm{~cm} \cos \left(2,500 \mathrm{rad} / \mathrm{st}-15.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the frequency of the vibration of the wave?

A) 398 Hz398 \mathrm{~Hz}
B) 422 Hz422 \mathrm{~Hz}
C) 302 Hz302 \mathrm{~Hz}
D) 490 Hz490 \mathrm{~Hz}
E) 467 Hz467 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
22
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the direction of the vibration of the wave?

A) the yy direction
B) the xx direction
C) the zz direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
23
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the direction of the velocity of the wave?

A) the z\mathrm{z} direction
B) the y direction
C) the t\mathrm{t} direction
D) the x\mathrm{x} direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
24
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the velocity of the wave?

A) 125 m/s125 \mathrm{~m} / \mathrm{s} in the y-\mathrm{y} direction
B) 250 m/s250 \mathrm{~m} / \mathrm{s} in the z-\mathrm{z} direction
C) 125 m/s125 \mathrm{~m} / \mathrm{s} in the +z+\mathrm{z} direction
D) 250 m/s250 \mathrm{~m} / \mathrm{s} in the y-\mathrm{y} direction
E) 125 m/s125 \mathrm{~m} / \mathrm{s} in the +y+\mathrm{y} direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
25
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{st}+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What are the wavenumber kk and direction of propagation of the wave?

A) 20 m120 \mathrm{~m}^{-1} ; traveling in the +z+\mathrm{z} direction
B) 10 m110 \mathrm{~m}^{-1} ; traveling in the y-\mathrm{y} direction
C) 10 m110 \mathrm{~m}^{-1} ; traveling in the +y+\mathrm{y} direction
D) 20 m120 \mathrm{~m}^{-1} ; traveling in the z-\mathrm{z} direction
E) 10 m110 \mathrm{~m}^{-1} ; traveling in the z-\mathrm{z} direction
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
26
transverse periodic wave is represented by the equation z(y,t)=1.50 cmsin(1,250rad/st+10.0 m1y)\mathrm{z}(\mathrm{y}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,250 \mathrm{rad} / \mathrm{s} t+10.0 \mathrm{~m}^{-1} \mathrm{y}\right) . What is the frequency of the vibration of the wave?

A) 240 Hz240 \mathrm{~Hz}
B) 199 Hz199 \mathrm{~Hz}
C) 289 Hz289 \mathrm{~Hz}
D) 319 Hz319 \mathrm{~Hz}
E) 150 Hz150 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
27
transverse periodic wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}-10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . Another transverse wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1x)y(x, t)=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=3.0 cmsin(1,500rad/st+10.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{st}+10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=3.0 cmsin(1,500rad/s10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s}-10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=3.0 cmcos(1,500rad/st)sin(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \cos (1,500 \mathrm{rad} / \mathrm{s} t) \sin \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=3.0 cmsin(1,500rad/st)cos(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin (1,500 \mathrm{rad} / \mathrm{st}) \cos \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
28
transverse periodic wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1x)y(x, t)=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . Another transverse wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st+10.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1} \mathrm{x}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=3.0 cmcos(1,500rad/st)sin(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \cos (1,500 \mathrm{rad} / \mathrm{s} t) \sin \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=3.0 cmsin(1,500rad/st)cos(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin (1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=3.0 cmsin(1,500rad/st10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=3.0 cmsin(1,500rad/st+10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{st}+10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
29
transverse periodic wave is represented by the equation y(x,t)=1.50 cmsin(1,500rad/st10.0 m1y(x, t)=-1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1}\right. x)\mathrm{x}) . Another transverse wave is represented by the equation y(x,t)=+1.50 cmsin(1,500rad/st+10.0 m1\mathrm{y}(\mathrm{x}, \mathrm{t})=+1.50 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}+10.0 \mathrm{~m}^{-1}\right. x)\mathrm{x}) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=3.0 cmcos(1,500rad/st)sin(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \cos (1,500 \mathrm{rad} / \mathrm{st}) \sin \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=3.0 cmsin(1,500rad/st10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t-10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=3.0 cmsin(1,500rad/st)cos(10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin (1,500 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=3.0 cmsin(1,500rad/st+10.0 m1x)y(x, t)=3.0 \mathrm{~cm} \sin \left(1,500 \mathrm{rad} / \mathrm{s} t+10.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
30
transverse periodic wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . Another transverse wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=4.0 cmsin(1,200rad/st)cos(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \sin (1,200 \mathrm{rad} / \mathrm{st}) \cos \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=4.0 cmcos(1,200rad/st+20.0 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=4.0 \mathrm{~cm} \cos \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=4.0 cmcos(1,200rad/st)sin(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} t) \sin \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(z,t)=4.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=4.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
31
transverse periodic wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1z)y(z, t)=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} t-20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . Another transverse wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st+20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) y(x,t)=4.0 cmcos(1,200rad/st+20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=4.0 cmsin(1,200rad/st)cos(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \sin (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(z,t)=4.0 cmsin(1,200rad/st20.0 m1z)y(z, t)=4.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right)
D) y(x,t)=4.0 cmcos(1,200rad/st)sin(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} t) \sin \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
32
transverse periodic wave is represented by the equation y(z,t)=2.0 cmsin(1,200rad/st20.0 m1x)y(z, t)=-2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} t-20.0 \mathrm{~m}^{-1} \mathrm{x}\right) . Another transverse wave is represented by the equation y(z,t)=+2.0 cmsin(1,200rad/st+20.0 m1z)y(z, t)=+2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} t+20.0 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) y(z,t)=4.0 cmsin(1,200rad/st20.0 m1z)\mathrm{y}(\mathrm{z}, \mathrm{t})=4.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20.0 \mathrm{~m}^{-1} \mathrm{z}\right)
B) y(x,t)=4.0 cmcos(1,200rad/st)sin(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} t) \sin \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=4.0 cmcos(1,200rad/st+20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \cos \left(1,200 \mathrm{rad} / \mathrm{s} t+20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=4.0 cmsin(1,200rad/st)cos(20.0 m1x)y(x, t)=4.0 \mathrm{~cm} \sin (1,200 \mathrm{rad} / \mathrm{st}) \cos \left(20.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
33
following figure is a graph of a wave at a fixed position.
 <strong>following figure is a graph of a wave at a fixed position.   The following figure is a graph of the same wave at a fixed time.  </strong> A)  450 \mathrm{~m} / \mathrm{s}  B)  150 \mathrm{~m} / \mathrm{s}  C)  250 \mathrm{~m} / \mathrm{s}  D)  200 \mathrm{~m} / \mathrm{s}  E)  300 \mathrm{~m} / \mathrm{s}
The following figure is a graph of the same wave at a fixed time.
 <strong>following figure is a graph of a wave at a fixed position.   The following figure is a graph of the same wave at a fixed time.  </strong> A)  450 \mathrm{~m} / \mathrm{s}  B)  150 \mathrm{~m} / \mathrm{s}  C)  250 \mathrm{~m} / \mathrm{s}  D)  200 \mathrm{~m} / \mathrm{s}  E)  300 \mathrm{~m} / \mathrm{s}

A) 450 m/s450 \mathrm{~m} / \mathrm{s}
B) 150 m/s150 \mathrm{~m} / \mathrm{s}
C) 250 m/s250 \mathrm{~m} / \mathrm{s}
D) 200 m/s200 \mathrm{~m} / \mathrm{s}
E) 300 m/s300 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
34
wave is represented by the equation y(x,t)=3.2 cmsin(1000rad/st50 m1x)y(x, t)=3.2 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t-50 \mathrm{~m}^{-1} \mathrm{x}\right) . Another wave, with the same wavelength and frequency, has an amplitude of 4.2 cm4.2 \mathrm{~cm} . If the two waves interfere constructively, then which equation could represent the superposition of the two waves?

A) y(x,t)=7.4 cmsin(1000rad/st+50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \mathrm{sin}\left(1000 \mathrm{rad} / \mathrm{st}+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=1.0 cmsin(1000rad/st+50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=1.0 cmsin(1000rad/st50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=7.4 cmsin(1000rad/st50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
35
wave is represented by the equation y(x,t)=3.2 cmsin(1000rad/st50 m1x)\mathrm{y}(\mathrm{x}, \mathrm{t})=3.2 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50 \mathrm{~m}^{-1} \mathrm{x}\right) . Another wave, with the same wavelength and frequency, has an amplitude of 4.2 cm4.2 \mathrm{~cm} . If the two waves interfere destructively, then which equation could represent the superposition of the two waves?

A) y(x,t)=7.4 cmsin(1000rad/st50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \mathrm{sin}\left(1000 \mathrm{rad} / \mathrm{s} t-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
B) y(x,t)=1.0 cmsin(1000rad/st+50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
C) y(x,t)=7.4 cmsin(1000rad/st+50.0 m1x)y(x, t)=7.4 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} t+50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
D) y(x,t)=1.0 cmsin(1000rad/st50.0 m1x)y(x, t)=1.0 \mathrm{~cm} \sin \left(1000 \mathrm{rad} / \mathrm{s} \mathrm{t}-50.0 \mathrm{~m}^{-1} \mathrm{x}\right)
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
36
longitudinal wave is represented by the equation z(z,t)=2.0 cmsin(1,200rad/st20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=-2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}-20 \mathrm{~m}^{-1} \mathrm{z}\right) . Another longitudinal wave is represented by the equation z(z,t)=+2.0 cmsin(1,200rad/st+20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=+2.0 \mathrm{~cm} \sin \left(1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}+20 \mathrm{~m}^{-1} \mathrm{z}\right) . What is the equation that represents the superposition of the two waves?

A) z(z,t)=+4.0 cmcos(1,200rad/st)cos(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=+4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \cos \left(20 \mathrm{~m}^{-1} \mathrm{z}\right)
B) z(z,t)=+4.0 cmcos(1,200rad/st)sin(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=+4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \sin \left(20 \mathrm{~m}^{-1} \mathrm{z}\right)
C) z(z,t)=2.0 cmcos(1,200rad/st)sin(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=-2.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \sin \left(20 \mathrm{~m}^{-1} \mathrm{z}\right)
D) z(z,t)=4.0 cmcos(1,200rad/st)sin(20 m1z)\mathrm{z}(\mathrm{z}, \mathrm{t})=-4.0 \mathrm{~cm} \cos (1,200 \mathrm{rad} / \mathrm{s} \mathrm{t}) \sin (20 \mathrm{~m}-1 \mathrm{z})
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
37
speakers are emitting coherent sound waves at a frequency of 440 Hz440 \mathrm{~Hz} . The waves are emitted in phase. If the speed of sound is 343 m/s343 \mathrm{~m} / \mathrm{s} , and it is observed that no sound is heard 17.2 m17.2 \mathrm{~m} from one speaker, which of the following is a possible distance to the second speaker?

A) 14.5 m14.5 \mathrm{~m}
B) 18.0 m18.0 \mathrm{~m}
C) 18.8 m18.8 \mathrm{~m}
D) 17.2 m17.2 \mathrm{~m}
E) 19.6 m19.6 \mathrm{~m}
F) 16.5 m16.5 \mathrm{~m}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
38
cello plays a note of frequency 220 Hz220 \mathrm{~Hz} using a length LL of one of its strings. What length of the same string must be used in order to play a fundamental frequency of 256 Hz256 \mathrm{~Hz} ? Assume in each case that the note played is the fundamental frequency of the string at the given length and that the tension T\mathrm{T} and mass per unit length are not changed when selecting a different length of the same string.

A) 1.72 L1.72 \mathrm{~L}
B) 0.86 L0.86 \mathrm{~L}
C) 0.43 L0.43 \mathrm{~L}
D) 0.58 L0.58 \mathrm{~L}
E) 2.32 L2.32 \mathrm{~L}
F) 1.16 L1.16 \mathrm{~L}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
39
is the mass of a string that is 17 cm17 \mathrm{~cm} long and has a fundamental frequency of 792 Hz792 \mathrm{~Hz} when under a tension of 1.7kN1.7 \mathrm{kN} ?

A) 6.4 g6.4 \mathrm{~g}
B) 3.2 g3.2 \mathrm{~g}
C) 4.0 g4.0 \mathrm{~g}
D) 64 g64 \mathrm{~g}
E) 1.6 g1.6 \mathrm{~g}
F) 32 g32 \mathrm{~g}
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
40
sound wave radiates from a source uniformly in all directions. If the power of the sound source is 200 watts, then the intensity of the sound wave 100 m100 \mathrm{~m} from the source is

A) 2.2 mW/m22.2 \mathrm{~mW} / \mathrm{m}^{2}
B) 1.2 mW/m21.2 \mathrm{~mW} / \mathrm{m}^{2} .
C) 1.8 mW/m21.8 \mathrm{~mW} / \mathrm{m}^{2} .
D) 1.6 mW/m21.6 \mathrm{~mW} / \mathrm{m}^{2} .
E) 2.0 mW/m22.0 \mathrm{~mW} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
41
speed of sound in water is 4.3 times the speed of sound in air. A whistle produces a sound wave in air with a frequency f0\mathrm{f}_{0} . When this sound wave enters the water, its frequency will be

A) f0/4.3\mathrm{f}_{0} / 4.3 .
B) 4.3f04.3 \mathrm{f}_{0} .
C) f0\mathrm{f}_{0} .
D) not enough information
Unlock Deck
Unlock for access to all 41 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 41 flashcards in this deck.