Deck 12: Sound

Full screen (f)
exit full mode
Question
The bulk modulus of water is 0.210×1010 N/m20.210 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} and the density is 1000 kg/m31000 \mathrm{~kg} / \mathrm{m}^{3} . The speed of sound in water is

A) 2,150 m/s2,150 \mathrm{~m} / \mathrm{s}
B) 2,750 m/s2,750 \mathrm{~m} / \mathrm{s} .
C) 2,490 m/s2,490 \mathrm{~m} / \mathrm{s} .
D) 3,100 m/s3,100 \mathrm{~m} / \mathrm{s} .
E) 1,450 m/s1,450 \mathrm{~m} / \mathrm{s} .
Use Space or
up arrow
down arrow
to flip the card.
Question
The speed of sound in helium is 965 m/s965 \mathrm{~m} / \mathrm{s} . If the density of helium is 0.179 kg/m30.179 \mathrm{~kg} / \mathrm{m}^{3} , then what is the bulk modulus of helium?

A) 1.67×105 N/m21.67 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
B) 1.56×105 N/m21.56 \times 10^{5}\mathrm{~N} / \mathrm{m}^{2}
C) 2.40×105 N/m22.40 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
D) 2.70×105 N/m22.70 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
E) 2.20×105 N/m22.20 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
Question
The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . If the density of air is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} , then what is the bulk modulus of air?

A) 2.50×105 N/m22.50 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
B) 2.03×105 N/m22.03 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
C) 1.68×105 N/m21.68 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
D) 1.41×105 N/m21.41 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
E) 1.15×105 N/m21.15 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
Question
The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the speed of sound in air at a temperature of 30C30^{\circ} \mathrm{C} ?

A) 336 m/s336 \mathrm{~m} / \mathrm{s}
B) 349 m/s349 \mathrm{~m} / \mathrm{s}
C) 342 m/s342 \mathrm{~m} / \mathrm{s}
D) 340 m/s340 \mathrm{~m} / \mathrm{s}
E) 338 m/s338 \mathrm{~m} / \mathrm{s}
Question
The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the speed of sound in air at a temperature of 30C-30^{\circ} \mathrm{C} ?

A) 308 m/s308 \mathrm{~m} / \mathrm{s}
B) 316 m/s316 \mathrm{~m} / \mathrm{s}
C) 312 m/s312 \mathrm{~m} / \mathrm{s}
D) 310 m/s310 \mathrm{~m} / \mathrm{s}
E) 314 m/s314 \mathrm{~m} / \mathrm{s}
Question
The bulk modulus of mercury is 2.85×1010 N/m22.85 \times 1010 \mathrm{~N} / \mathrm{m}^{2} . If the density of mercury is 1.36×104 kg/m31.36 \times 104 \mathrm{~kg} / \mathrm{m}^{3} , then what is the speed of sound in mercury?

A) 6.91×104 m/s6.91 \times 10^{-4} \mathrm{~m} / \mathrm{s}
B) 1.45×103 m/s1.45 \times 10^{3} \mathrm{~m} / \mathrm{s}
C) 4.77×107 m/s4.77 \times 10^{-7} \mathrm{~m} / \mathrm{s}
D) 2.10×106 m/s2.10 \times 10^{6} \mathrm{~m} / \mathrm{s}
E) 2.44×108 m/s2.44 \times 10^{8} \mathrm{~m} / \mathrm{s}
Question
The Young's modulus of aluminum is 6.90×1010 N/m26.90 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} . If the density of aluminum is 2,700 kg/m32,700 \mathrm{~kg} / \mathrm{m}^{3} , then what is the speed of longitudinal waves along a thin aluminum rod?

A) 5,060 m/s5,060 \mathrm{~m} / \mathrm{s}
B) 6,020 m/s6,020 \mathrm{~m} / \mathrm{s}
C) 4,850 m/s4,850 \mathrm{~m} / \mathrm{s}
D) 6,360 m/s6,360 \mathrm{~m} / \mathrm{s}
E) 5,750 m/s5,750 \mathrm{~m} / \mathrm{s}
Question
The speed of longitudinal waves in a long brass rod is 3,260 m/s3,260 \mathrm{~m} / \mathrm{s} . If the density of brass is 8,470 kg/m38,470 \mathrm{~kg} / \mathrm{m}^{3} , then what is the elastic modulus of brass?

A) 9.00×1010 N/m29.00 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
B) 8.70×1010 N/m28.70 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
C) 9.80×1010 N/m29.80 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
D) 8.10×1010 N/m28.10 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
E) 8.50×1010 N/m28.50 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
Question
A sound wave in brass has a displacement amplitude of 3.00 mm3.00 \mathrm{~mm} . The frequency of the sound wave 750 Hz750 \mathrm{~Hz} and the speed is 2,813 m/s2,813 \mathrm{~m} / \mathrm{s} . If the density of brass is 8.47×103 kg/m38.47 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} , then what is the pressure amplitude of the sound wave?

A) 3.37×108 N/m23.37 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
B) 4.70×108 N/m24.70 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
C) 4.17×108 N/m24.17 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
D) 5.38×108 N/m25.38 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
E) 5.10×108 N/m25.10 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
Question
A sound wave in air has an intensity of 1.00×103 W/m21.00 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} . The density of air is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} and the speed of sound in air is 331 m/s331 \mathrm{~m} / \mathrm{s} . The pressure amplitude of the sound wave is

A) 0.980 N/m20.980 \mathrm{~N} / \mathrm{m}^{2} .
B) 0.850 N/m20.850 \mathrm{~N} / \mathrm{m}^{2} .
C) 0.740 N/m20.740 \mathrm{~N} / \mathrm{m}^{2} .
D) 0.821 N/m20.821 \mathrm{~N} / \mathrm{m}^{2} .
E) 0.924 N/m20.924 \mathrm{~N} / \mathrm{m}^{2} .
Question
A sound wave in water has an intensity of 1.00×103 W/m21.00 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} . The density of water is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} and the speed of sound in water is 1,482 m/s1,482 \mathrm{~m} / \mathrm{s} . The pressure amplitude of the sound wave is

A) 42.5 N/m242.5 \mathrm{~N} / \mathrm{m}^{2} .
B) 39.5 N/m239.5 \mathrm{~N} / \mathrm{m}^{2} .
C) 49.5 N/m249.5 \mathrm{~N} / \mathrm{m}^{2} .
D) 60.2 N/m260.2 \mathrm{~N} / \mathrm{m}^{2} .
E) 54.4 N/m254.4 \mathrm{~N} / \mathrm{m}^{2} .
Question
A sound wave in helium has an intensity of 1.00×103 W/m21.00 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} . The density of helium is 0.179 kg/m30.179 \mathrm{~kg} / \mathrm{m}^{3} and the speed of sound in helium is 965 m/s965 \mathrm{~m} / \mathrm{s} . The pressure amplitude of the sound wave is

A) 0.276 N/m20.276 \mathrm{~N} / \mathrm{m}^{2}
B) 0.476 N/m20.476 \mathrm{~N} / \mathrm{m}^{2} .
C) 0.345 N/m20.345 \mathrm{~N} / \mathrm{m}^{2}
D) 0.682 N/m20.682 \mathrm{~N} / \mathrm{m}^{2} .
E) 0.588 N/m20.588 \mathrm{~N} / \mathrm{m}^{2} .
Question
The sound of a jet engine is given as 120 dB120 \mathrm{~dB} . What is the intensity of the jet sound wave?

A) 0.6 W/m20.6 \mathrm{~W} / \mathrm{m}^{2}
B) 0.8 W/m20.8 \mathrm{~W} / \mathrm{m}^{2}
C) 1.0 W/m21.0 \mathrm{~W} / \mathrm{m}^{2}
D) 0.2 W/m20.2 \mathrm{~W} / \mathrm{m}^{2}
E) 0.4 W/m20.4 \mathrm{~W} / \mathrm{m}^{2}
Question
The sound of a bird singing is given as 5 dB5 \mathrm{~dB} . What is the intensity of the sound of a bird singing?

A) 4.25×1012 W/m24.25 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
B) 3.16×1012 W/m23.16 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
C) 2.98×1012 W/m22.98 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
D) 1.95×1012 W/m21.95 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
E) 2.04×1012 W/m22.04 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
Question
The sound of a band is rated as 50 dB50 \mathrm{~dB} at a distance of 30.0 m30.0 \mathrm{~m} . What is the sound intensity level of the band when one is 10.0 m10.0 \mathrm{~m} from the band?

A) 52.9 dB52.9 \mathrm{~dB}
B) 55.2 dB55.2 \mathrm{~dB}
C) 50.1 dB50.1 \mathrm{~dB}
D) 57.3 dB57.3 \mathrm{~dB}
E) 59.5 dB59.5 \mathrm{~dB}
Question
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 150 N150 \mathrm{~N} between two points that are 0.500 m0.500 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 50.2 cm50.2 \mathrm{~cm}
B) 60.4 cm60.4 \mathrm{~cm}
C) 57.5 cm57.5 \mathrm{~cm}
D) 65.3 cm65.3 \mathrm{~cm}
E) 55.2 cm55.2 \mathrm{~cm}
Question
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 120 N120 \mathrm{~N} between two points that are 0.400 m0.400 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 54.1 cm54.1 \mathrm{~cm}
B) 61.5 cm61.5 \mathrm{~cm}
C) 66.8 cm66.8 \mathrm{~cm}
D) 63.5 cm63.5 \mathrm{~cm}
E) 59.0 cm59.0 \mathrm{~cm}
Question
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 150 N150 \mathrm{~N} between two points that are 0.500 m0.500 \mathrm{~m} apart. The frequency of the second mode of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 43.6 cm43.6 \mathrm{~cm}
B) 40.1 cm40.1 \mathrm{~cm}
C) 30.2 cm30.2 \mathrm{~cm}
D) 35.6 cm35.6 \mathrm{~cm}
E) 37.5 cm37.5 \mathrm{~cm}
Question
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 120 N120 \mathrm{~N} between two points that are 0.400 m0.400 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the frequency of the second mode of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 95.0 cm95.0 \mathrm{~cm}
B) 175 cm175 \mathrm{~cm}
C) 225 cm225 \mathrm{~cm}
D) 108 cm108 \mathrm{~cm}
E) 125 cm125 \mathrm{~cm}
Question
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 150 N150 \mathrm{~N} between two points that are 0.500 m0.500 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air at 20C20^{\circ} \mathrm{C} and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 62.6 cm62.6 \mathrm{~cm}
B) 50.2 cm50.2 \mathrm{~cm}
C) 53.8 cm53.8 \mathrm{~cm}
D) 59.3 cm59.3 \mathrm{~cm}
E) 70.5 cm70.5 \mathrm{~cm}
Question
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 120 N120 \mathrm{~N} between two points that are 0.400 m0.400 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the frequency of the second mode of an organ pipe filled with air at 20C-20^{\circ} \mathrm{C} and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 150 cm150 \mathrm{~cm}
B) 125 cm125 \mathrm{~cm}
C) 75.0 cm75.0 \mathrm{~cm}
D) 104 cm104 \mathrm{~cm}
E) 175 cm175 \mathrm{~cm}
Question
An ambulance is generating a siren sound at a frequency of 2,400 Hz. The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . The observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the ambulance and the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the observer. What is the frequency of the siren perceived by the observer?

A) 2,100 Hz2,100 \mathrm{~Hz}
B) 2,430 Hz2,430 \mathrm{~Hz}
C) 2,759 Hz2,759 \mathrm{~Hz}
D) 2,550 Hz2,550 \mathrm{~Hz}
E) 2,250 Hz2,250 \mathrm{~Hz}
Question
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . The observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the ambulance and the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} away the observer. What is the frequency of the siren perceived by the observer?

A) 2,424 Hz2,424 \mathrm{~Hz}
B) 2,352 Hz2,352 \mathrm{~Hz}
C) 2,376 Hz2,376 \mathrm{~Hz}
D) 2,448 Hz2,448 \mathrm{~Hz}
E) 2,400 Hz2,400 \mathrm{~Hz}
Question
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the stationary observer, then what is the frequency of the siren perceived by the observer?

A) 2,525 Hz2,525 \mathrm{~Hz}
B) 2,480 Hz2,480 \mathrm{~Hz}
C) 2,500 Hz2,500 \mathrm{~Hz}
D) 2,540 Hz2,540 \mathrm{~Hz}
E) 2,579 Hz2,579 \mathrm{~Hz}
Question
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} away from the stationary observer, then what is the frequency of the siren perceived by the observer?

A) 2,244 Hz2,244 \mathrm{~Hz}
B) 2,266 Hz2,266 \mathrm{~Hz}
C) 2,306 Hz2,306 \mathrm{~Hz}
D) 2,375 Hz2,375 \mathrm{~Hz}
E) 2,210 Hz2,210 \mathrm{~Hz}
Question
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the stationary ambulance, then what is the frequency of the siren perceived by the observer?

A) 2,508 Hz2,508 \mathrm{~Hz}
B) 2,640 Hz2,640 \mathrm{~Hz}
C) 2,567 Hz2,567 \mathrm{~Hz}
D) 2,520 Hz2,520 \mathrm{~Hz}
E) 2,475 Hz2,475 \mathrm{~Hz}
Question
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} away from the stationary ambulance, then what is the frequency of the siren perceived by the observer?

A) 2,366 Hz2,366 \mathrm{~Hz}
B) 2,233 Hz2,233 \mathrm{~Hz}
C) 2,275 Hz2,275 \mathrm{~Hz}
D) 2,305 Hz2,305 \mathrm{~Hz}
E) 2,375 Hz2,375 \mathrm{~Hz}
Question
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . The observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the ambulance and the ambulance is traveling at a velocity of 20.00 m/s20.00 \mathrm{~m} / \mathrm{s} toward the observer. What is the frequency of the siren perceived by the observer?

A) 2,489 Hz2,489 \mathrm{~Hz}
B) 2,560 Hz2,560 \mathrm{~Hz}
C) 2,675 Hz2,675 \mathrm{~Hz}
D) 2,830 Hz2,830 \mathrm{~Hz}
E) 2,725 Hz2,725 \mathrm{~Hz}
Question
A guitar string with a tension of 150 N150 \mathrm{~N} is played together with a tuning fork whose frequency is 256 Hz256 \mathrm{~Hz} , and beats of 2 Hz2 \mathrm{~Hz} are heard. Assuming the guitar string is higher in frequency than the tuning fork, to what new tension should the guitar string be adjusted for the string and tuning fork to have the same frequency?

A) 151 N151 \mathrm{~N}
B) 148 N148 \mathrm{~N}
C) 152 N152 \mathrm{~N}
D) 149 N149 \mathrm{~N}
E) The length of the string must be given in order to solve this problem.
Question
A 1024 Hz1024 \mathrm{~Hz} tuning fork is dangled at the end of a string such that its center of mass is 1.2 m1.2 \mathrm{~m} below the point at which the other end of the string is attached to door frame, making a pendulum of sorts. The tuning fork may be treated as a point mass for the purposes of this problem. If the pendulum is brought to an amplitude of 2222^{\circ} and released, what is the range of frequencies heard by an observer standing in the plane of the pendulum's motion? The speed of sound is 340 m/s340 \mathrm{~m} / \mathrm{s} .

A) 1020 Hz1020 \mathrm{~Hz} to 1028 Hz1028 \mathrm{~Hz}
B) 1010 Hz1010 \mathrm{~Hz} to 1038 Hz1038 \mathrm{~Hz}
C) 1012 Hz1012 \mathrm{~Hz} to 1036 Hz1036 \mathrm{~Hz}
D) 1015 Hz1015 \mathrm{~Hz} to 1033 Hz1033 \mathrm{~Hz}
Question
A 1024 Hz1024 \mathrm{~Hz} tuning fork is dangled at the end of a string such that its center of mass is 1.2 m1.2 \mathrm{~m} below the point at which the other end of the string is attached to door frame, making a pendulum of sorts. The tuning fork may be treated as a point mass for the purposes of this problem. The pendulum is brought to a maximum angle and released. If the range of frequencies heard by an observer standing in the plane of the pendulum's motion is 10201028 Hz1020-1028 \mathrm{~Hz} , what is the angle to which the pendulum was raised? The speed of sound is 340 m/s340 \mathrm{~m} / \mathrm{s} .

A) 1717^{\circ}
B) 4.34.3^{\circ}
C) 1818^{\circ}
D) 4646^{\circ}
E) 2222^{\circ}
Question
A block holding a ringing tuning fork is attached to a wall by a spring. The block oscillates back and forth on a horizontal, frictionless surface, with amplitude 17 cm17 \mathrm{~cm} . The spring constant is 390 N/m390 \mathrm{~N} / \mathrm{m} . An observer who is situated so that the block's direction of motion is either directly towards or away from him notes that the frequency he hears varies between 174 and 178 Hz178 \mathrm{~Hz} . What is the mass of the tuning fork and block together? The speed of sound is 340 m/s340 \mathrm{~m} / \mathrm{s} .

A) 2.9 kg2.9 \mathrm{~kg}
B) 0.76 kg0.76 \mathrm{~kg}
C) 4.4 kg4.4 \mathrm{~kg}
D) 0.18 kg0.18 \mathrm{~kg}
Question
A bat is flying toward a cave wall at 27.0 m/s27.0 \mathrm{~m} / \mathrm{s} . What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0kHz52.0 \mathrm{kHz} ? The speed of sound is 341.5 m/s341.5 \mathrm{~m} / \mathrm{s} .

A) 61.3kHz61.3 \mathrm{kHz}
B) 56.1kHz56.1 \mathrm{kHz}
C) 56.5kHz56.5 \mathrm{kHz}
D) 60.9kHz60.9 \mathrm{kHz}
Question
A bat is flying toward a cave wall. If it hears reflected sound of frequency 60.9kHz60.9 \mathrm{kHz} , what is its flying speed, assuming it emits sound at 52.0kHz52.0 \mathrm{kHz} ? The speed of sound is 341.5 m/s341.5 \mathrm{~m} / \mathrm{s} .

A) 28.1 m/s28.1 \mathrm{~m} / \mathrm{s}
B) 26.9 m/s26.9 \mathrm{~m} / \mathrm{s}
C) 25.9 m/s25.9 \mathrm{~m} / \mathrm{s}
D) 49.9 m/s49.9 \mathrm{~m} / \mathrm{s}
E) 58.4 m/s58.4 \mathrm{~m} / \mathrm{s}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/34
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Sound
1
The bulk modulus of water is 0.210×1010 N/m20.210 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} and the density is 1000 kg/m31000 \mathrm{~kg} / \mathrm{m}^{3} . The speed of sound in water is

A) 2,150 m/s2,150 \mathrm{~m} / \mathrm{s}
B) 2,750 m/s2,750 \mathrm{~m} / \mathrm{s} .
C) 2,490 m/s2,490 \mathrm{~m} / \mathrm{s} .
D) 3,100 m/s3,100 \mathrm{~m} / \mathrm{s} .
E) 1,450 m/s1,450 \mathrm{~m} / \mathrm{s} .
1,450 m/s1,450 \mathrm{~m} / \mathrm{s} .
2
The speed of sound in helium is 965 m/s965 \mathrm{~m} / \mathrm{s} . If the density of helium is 0.179 kg/m30.179 \mathrm{~kg} / \mathrm{m}^{3} , then what is the bulk modulus of helium?

A) 1.67×105 N/m21.67 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
B) 1.56×105 N/m21.56 \times 10^{5}\mathrm{~N} / \mathrm{m}^{2}
C) 2.40×105 N/m22.40 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
D) 2.70×105 N/m22.70 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
E) 2.20×105 N/m22.20 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
1.67×105 N/m21.67 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
3
The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . If the density of air is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} , then what is the bulk modulus of air?

A) 2.50×105 N/m22.50 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
B) 2.03×105 N/m22.03 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
C) 1.68×105 N/m21.68 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
D) 1.41×105 N/m21.41 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
E) 1.15×105 N/m21.15 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
1.41×105 N/m21.41 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
4
The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the speed of sound in air at a temperature of 30C30^{\circ} \mathrm{C} ?

A) 336 m/s336 \mathrm{~m} / \mathrm{s}
B) 349 m/s349 \mathrm{~m} / \mathrm{s}
C) 342 m/s342 \mathrm{~m} / \mathrm{s}
D) 340 m/s340 \mathrm{~m} / \mathrm{s}
E) 338 m/s338 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
5
The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the speed of sound in air at a temperature of 30C-30^{\circ} \mathrm{C} ?

A) 308 m/s308 \mathrm{~m} / \mathrm{s}
B) 316 m/s316 \mathrm{~m} / \mathrm{s}
C) 312 m/s312 \mathrm{~m} / \mathrm{s}
D) 310 m/s310 \mathrm{~m} / \mathrm{s}
E) 314 m/s314 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
6
The bulk modulus of mercury is 2.85×1010 N/m22.85 \times 1010 \mathrm{~N} / \mathrm{m}^{2} . If the density of mercury is 1.36×104 kg/m31.36 \times 104 \mathrm{~kg} / \mathrm{m}^{3} , then what is the speed of sound in mercury?

A) 6.91×104 m/s6.91 \times 10^{-4} \mathrm{~m} / \mathrm{s}
B) 1.45×103 m/s1.45 \times 10^{3} \mathrm{~m} / \mathrm{s}
C) 4.77×107 m/s4.77 \times 10^{-7} \mathrm{~m} / \mathrm{s}
D) 2.10×106 m/s2.10 \times 10^{6} \mathrm{~m} / \mathrm{s}
E) 2.44×108 m/s2.44 \times 10^{8} \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
7
The Young's modulus of aluminum is 6.90×1010 N/m26.90 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} . If the density of aluminum is 2,700 kg/m32,700 \mathrm{~kg} / \mathrm{m}^{3} , then what is the speed of longitudinal waves along a thin aluminum rod?

A) 5,060 m/s5,060 \mathrm{~m} / \mathrm{s}
B) 6,020 m/s6,020 \mathrm{~m} / \mathrm{s}
C) 4,850 m/s4,850 \mathrm{~m} / \mathrm{s}
D) 6,360 m/s6,360 \mathrm{~m} / \mathrm{s}
E) 5,750 m/s5,750 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
8
The speed of longitudinal waves in a long brass rod is 3,260 m/s3,260 \mathrm{~m} / \mathrm{s} . If the density of brass is 8,470 kg/m38,470 \mathrm{~kg} / \mathrm{m}^{3} , then what is the elastic modulus of brass?

A) 9.00×1010 N/m29.00 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
B) 8.70×1010 N/m28.70 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
C) 9.80×1010 N/m29.80 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
D) 8.10×1010 N/m28.10 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
E) 8.50×1010 N/m28.50 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
9
A sound wave in brass has a displacement amplitude of 3.00 mm3.00 \mathrm{~mm} . The frequency of the sound wave 750 Hz750 \mathrm{~Hz} and the speed is 2,813 m/s2,813 \mathrm{~m} / \mathrm{s} . If the density of brass is 8.47×103 kg/m38.47 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} , then what is the pressure amplitude of the sound wave?

A) 3.37×108 N/m23.37 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
B) 4.70×108 N/m24.70 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
C) 4.17×108 N/m24.17 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
D) 5.38×108 N/m25.38 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
E) 5.10×108 N/m25.10 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
10
A sound wave in air has an intensity of 1.00×103 W/m21.00 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} . The density of air is 1.29 kg/m31.29 \mathrm{~kg} / \mathrm{m}^{3} and the speed of sound in air is 331 m/s331 \mathrm{~m} / \mathrm{s} . The pressure amplitude of the sound wave is

A) 0.980 N/m20.980 \mathrm{~N} / \mathrm{m}^{2} .
B) 0.850 N/m20.850 \mathrm{~N} / \mathrm{m}^{2} .
C) 0.740 N/m20.740 \mathrm{~N} / \mathrm{m}^{2} .
D) 0.821 N/m20.821 \mathrm{~N} / \mathrm{m}^{2} .
E) 0.924 N/m20.924 \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
11
A sound wave in water has an intensity of 1.00×103 W/m21.00 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} . The density of water is 1,000 kg/m31,000 \mathrm{~kg} / \mathrm{m}^{3} and the speed of sound in water is 1,482 m/s1,482 \mathrm{~m} / \mathrm{s} . The pressure amplitude of the sound wave is

A) 42.5 N/m242.5 \mathrm{~N} / \mathrm{m}^{2} .
B) 39.5 N/m239.5 \mathrm{~N} / \mathrm{m}^{2} .
C) 49.5 N/m249.5 \mathrm{~N} / \mathrm{m}^{2} .
D) 60.2 N/m260.2 \mathrm{~N} / \mathrm{m}^{2} .
E) 54.4 N/m254.4 \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
12
A sound wave in helium has an intensity of 1.00×103 W/m21.00 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2} . The density of helium is 0.179 kg/m30.179 \mathrm{~kg} / \mathrm{m}^{3} and the speed of sound in helium is 965 m/s965 \mathrm{~m} / \mathrm{s} . The pressure amplitude of the sound wave is

A) 0.276 N/m20.276 \mathrm{~N} / \mathrm{m}^{2}
B) 0.476 N/m20.476 \mathrm{~N} / \mathrm{m}^{2} .
C) 0.345 N/m20.345 \mathrm{~N} / \mathrm{m}^{2}
D) 0.682 N/m20.682 \mathrm{~N} / \mathrm{m}^{2} .
E) 0.588 N/m20.588 \mathrm{~N} / \mathrm{m}^{2} .
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
13
The sound of a jet engine is given as 120 dB120 \mathrm{~dB} . What is the intensity of the jet sound wave?

A) 0.6 W/m20.6 \mathrm{~W} / \mathrm{m}^{2}
B) 0.8 W/m20.8 \mathrm{~W} / \mathrm{m}^{2}
C) 1.0 W/m21.0 \mathrm{~W} / \mathrm{m}^{2}
D) 0.2 W/m20.2 \mathrm{~W} / \mathrm{m}^{2}
E) 0.4 W/m20.4 \mathrm{~W} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
14
The sound of a bird singing is given as 5 dB5 \mathrm{~dB} . What is the intensity of the sound of a bird singing?

A) 4.25×1012 W/m24.25 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
B) 3.16×1012 W/m23.16 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
C) 2.98×1012 W/m22.98 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
D) 1.95×1012 W/m21.95 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
E) 2.04×1012 W/m22.04 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
15
The sound of a band is rated as 50 dB50 \mathrm{~dB} at a distance of 30.0 m30.0 \mathrm{~m} . What is the sound intensity level of the band when one is 10.0 m10.0 \mathrm{~m} from the band?

A) 52.9 dB52.9 \mathrm{~dB}
B) 55.2 dB55.2 \mathrm{~dB}
C) 50.1 dB50.1 \mathrm{~dB}
D) 57.3 dB57.3 \mathrm{~dB}
E) 59.5 dB59.5 \mathrm{~dB}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
16
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 150 N150 \mathrm{~N} between two points that are 0.500 m0.500 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 50.2 cm50.2 \mathrm{~cm}
B) 60.4 cm60.4 \mathrm{~cm}
C) 57.5 cm57.5 \mathrm{~cm}
D) 65.3 cm65.3 \mathrm{~cm}
E) 55.2 cm55.2 \mathrm{~cm}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
17
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 120 N120 \mathrm{~N} between two points that are 0.400 m0.400 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 54.1 cm54.1 \mathrm{~cm}
B) 61.5 cm61.5 \mathrm{~cm}
C) 66.8 cm66.8 \mathrm{~cm}
D) 63.5 cm63.5 \mathrm{~cm}
E) 59.0 cm59.0 \mathrm{~cm}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
18
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 150 N150 \mathrm{~N} between two points that are 0.500 m0.500 \mathrm{~m} apart. The frequency of the second mode of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 43.6 cm43.6 \mathrm{~cm}
B) 40.1 cm40.1 \mathrm{~cm}
C) 30.2 cm30.2 \mathrm{~cm}
D) 35.6 cm35.6 \mathrm{~cm}
E) 37.5 cm37.5 \mathrm{~cm}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
19
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 120 N120 \mathrm{~N} between two points that are 0.400 m0.400 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the frequency of the second mode of an organ pipe filled with air and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 95.0 cm95.0 \mathrm{~cm}
B) 175 cm175 \mathrm{~cm}
C) 225 cm225 \mathrm{~cm}
D) 108 cm108 \mathrm{~cm}
E) 125 cm125 \mathrm{~cm}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
20
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 150 N150 \mathrm{~N} between two points that are 0.500 m0.500 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the fundamental frequency of an organ pipe filled with air at 20C20^{\circ} \mathrm{C} and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 62.6 cm62.6 \mathrm{~cm}
B) 50.2 cm50.2 \mathrm{~cm}
C) 53.8 cm53.8 \mathrm{~cm}
D) 59.3 cm59.3 \mathrm{~cm}
E) 70.5 cm70.5 \mathrm{~cm}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
21
A string with a mass per length of 2.00 g/m2.00 \mathrm{~g} / \mathrm{m} is stretched with a force of 120 N120 \mathrm{~N} between two points that are 0.400 m0.400 \mathrm{~m} apart. The fundamental frequency of the stretched string is in tune with the frequency of the second mode of an organ pipe filled with air at 20C-20^{\circ} \mathrm{C} and open at both ends. The speed of sound in air at 0C0^{\circ} \mathrm{C} is 331 m/s331 \mathrm{~m} / \mathrm{s} . What is the length of the organ pipe?

A) 150 cm150 \mathrm{~cm}
B) 125 cm125 \mathrm{~cm}
C) 75.0 cm75.0 \mathrm{~cm}
D) 104 cm104 \mathrm{~cm}
E) 175 cm175 \mathrm{~cm}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
22
An ambulance is generating a siren sound at a frequency of 2,400 Hz. The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . The observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the ambulance and the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the observer. What is the frequency of the siren perceived by the observer?

A) 2,100 Hz2,100 \mathrm{~Hz}
B) 2,430 Hz2,430 \mathrm{~Hz}
C) 2,759 Hz2,759 \mathrm{~Hz}
D) 2,550 Hz2,550 \mathrm{~Hz}
E) 2,250 Hz2,250 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
23
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . The observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the ambulance and the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} away the observer. What is the frequency of the siren perceived by the observer?

A) 2,424 Hz2,424 \mathrm{~Hz}
B) 2,352 Hz2,352 \mathrm{~Hz}
C) 2,376 Hz2,376 \mathrm{~Hz}
D) 2,448 Hz2,448 \mathrm{~Hz}
E) 2,400 Hz2,400 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
24
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the stationary observer, then what is the frequency of the siren perceived by the observer?

A) 2,525 Hz2,525 \mathrm{~Hz}
B) 2,480 Hz2,480 \mathrm{~Hz}
C) 2,500 Hz2,500 \mathrm{~Hz}
D) 2,540 Hz2,540 \mathrm{~Hz}
E) 2,579 Hz2,579 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
25
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the ambulance is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} away from the stationary observer, then what is the frequency of the siren perceived by the observer?

A) 2,244 Hz2,244 \mathrm{~Hz}
B) 2,266 Hz2,266 \mathrm{~Hz}
C) 2,306 Hz2,306 \mathrm{~Hz}
D) 2,375 Hz2,375 \mathrm{~Hz}
E) 2,210 Hz2,210 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
26
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the stationary ambulance, then what is the frequency of the siren perceived by the observer?

A) 2,508 Hz2,508 \mathrm{~Hz}
B) 2,640 Hz2,640 \mathrm{~Hz}
C) 2,567 Hz2,567 \mathrm{~Hz}
D) 2,520 Hz2,520 \mathrm{~Hz}
E) 2,475 Hz2,475 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
27
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . If the observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} away from the stationary ambulance, then what is the frequency of the siren perceived by the observer?

A) 2,366 Hz2,366 \mathrm{~Hz}
B) 2,233 Hz2,233 \mathrm{~Hz}
C) 2,275 Hz2,275 \mathrm{~Hz}
D) 2,305 Hz2,305 \mathrm{~Hz}
E) 2,375 Hz2,375 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
28
An ambulance is generating a siren sound at a frequency of 2,400 Hz2,400 \mathrm{~Hz} . The speed of sound is 345.0 m/s345.0 \mathrm{~m} / \mathrm{s} . The observer is traveling at a velocity of 24.00 m/s24.00 \mathrm{~m} / \mathrm{s} toward the ambulance and the ambulance is traveling at a velocity of 20.00 m/s20.00 \mathrm{~m} / \mathrm{s} toward the observer. What is the frequency of the siren perceived by the observer?

A) 2,489 Hz2,489 \mathrm{~Hz}
B) 2,560 Hz2,560 \mathrm{~Hz}
C) 2,675 Hz2,675 \mathrm{~Hz}
D) 2,830 Hz2,830 \mathrm{~Hz}
E) 2,725 Hz2,725 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
29
A guitar string with a tension of 150 N150 \mathrm{~N} is played together with a tuning fork whose frequency is 256 Hz256 \mathrm{~Hz} , and beats of 2 Hz2 \mathrm{~Hz} are heard. Assuming the guitar string is higher in frequency than the tuning fork, to what new tension should the guitar string be adjusted for the string and tuning fork to have the same frequency?

A) 151 N151 \mathrm{~N}
B) 148 N148 \mathrm{~N}
C) 152 N152 \mathrm{~N}
D) 149 N149 \mathrm{~N}
E) The length of the string must be given in order to solve this problem.
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
30
A 1024 Hz1024 \mathrm{~Hz} tuning fork is dangled at the end of a string such that its center of mass is 1.2 m1.2 \mathrm{~m} below the point at which the other end of the string is attached to door frame, making a pendulum of sorts. The tuning fork may be treated as a point mass for the purposes of this problem. If the pendulum is brought to an amplitude of 2222^{\circ} and released, what is the range of frequencies heard by an observer standing in the plane of the pendulum's motion? The speed of sound is 340 m/s340 \mathrm{~m} / \mathrm{s} .

A) 1020 Hz1020 \mathrm{~Hz} to 1028 Hz1028 \mathrm{~Hz}
B) 1010 Hz1010 \mathrm{~Hz} to 1038 Hz1038 \mathrm{~Hz}
C) 1012 Hz1012 \mathrm{~Hz} to 1036 Hz1036 \mathrm{~Hz}
D) 1015 Hz1015 \mathrm{~Hz} to 1033 Hz1033 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
31
A 1024 Hz1024 \mathrm{~Hz} tuning fork is dangled at the end of a string such that its center of mass is 1.2 m1.2 \mathrm{~m} below the point at which the other end of the string is attached to door frame, making a pendulum of sorts. The tuning fork may be treated as a point mass for the purposes of this problem. The pendulum is brought to a maximum angle and released. If the range of frequencies heard by an observer standing in the plane of the pendulum's motion is 10201028 Hz1020-1028 \mathrm{~Hz} , what is the angle to which the pendulum was raised? The speed of sound is 340 m/s340 \mathrm{~m} / \mathrm{s} .

A) 1717^{\circ}
B) 4.34.3^{\circ}
C) 1818^{\circ}
D) 4646^{\circ}
E) 2222^{\circ}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
32
A block holding a ringing tuning fork is attached to a wall by a spring. The block oscillates back and forth on a horizontal, frictionless surface, with amplitude 17 cm17 \mathrm{~cm} . The spring constant is 390 N/m390 \mathrm{~N} / \mathrm{m} . An observer who is situated so that the block's direction of motion is either directly towards or away from him notes that the frequency he hears varies between 174 and 178 Hz178 \mathrm{~Hz} . What is the mass of the tuning fork and block together? The speed of sound is 340 m/s340 \mathrm{~m} / \mathrm{s} .

A) 2.9 kg2.9 \mathrm{~kg}
B) 0.76 kg0.76 \mathrm{~kg}
C) 4.4 kg4.4 \mathrm{~kg}
D) 0.18 kg0.18 \mathrm{~kg}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
33
A bat is flying toward a cave wall at 27.0 m/s27.0 \mathrm{~m} / \mathrm{s} . What is the frequency of the reflected sound that it hears, assuming it emits sound at 52.0kHz52.0 \mathrm{kHz} ? The speed of sound is 341.5 m/s341.5 \mathrm{~m} / \mathrm{s} .

A) 61.3kHz61.3 \mathrm{kHz}
B) 56.1kHz56.1 \mathrm{kHz}
C) 56.5kHz56.5 \mathrm{kHz}
D) 60.9kHz60.9 \mathrm{kHz}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
34
A bat is flying toward a cave wall. If it hears reflected sound of frequency 60.9kHz60.9 \mathrm{kHz} , what is its flying speed, assuming it emits sound at 52.0kHz52.0 \mathrm{kHz} ? The speed of sound is 341.5 m/s341.5 \mathrm{~m} / \mathrm{s} .

A) 28.1 m/s28.1 \mathrm{~m} / \mathrm{s}
B) 26.9 m/s26.9 \mathrm{~m} / \mathrm{s}
C) 25.9 m/s25.9 \mathrm{~m} / \mathrm{s}
D) 49.9 m/s49.9 \mathrm{~m} / \mathrm{s}
E) 58.4 m/s58.4 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 34 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 34 flashcards in this deck.