Deck 18: Electric Current and Circuits

Full screen (f)
exit full mode
Question
A 2.50 A2.50 \mathrm{~A} current is carried by a copper wire of radius 1.0 mm1.0 \mathrm{~mm} . If the density of conduction electrons is 8.0×8.0 \times 1028 m31028 \mathrm{~m}^{-3} , what is the drift velocity of the conduction electrons?

A) 6.2×105 m/s6.2 \times 10^{-5} \mathrm{~m} / \mathrm{s}
B) 6.2×104 m/s6.2 \times 10^{-4} \mathrm{~m} / \mathrm{s}
C) 3.2×104 m/s3.2 \times 10^{-4} \mathrm{~m} / \mathrm{s}
D) 3.0×108 m/s3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
E) 1.6×105 m/s1.6 \times 10^{-5} \mathrm{~m} / \mathrm{s}
Use Space or
up arrow
down arrow
to flip the card.
Question
Silver contains 5.8×10285.8 \times 1028 conduction electrons per m3\mathrm{m} 3 . How many conduction electrons are in a 1.0 m1.0 \mathrm{~m} length of silver wire of diameter 2.6 mm2.6 \mathrm{~mm} ?

A) 3.1×10233.1 \times 1023
B) 4.7×1044.7 \times 10^{4}
C) 1.9×1051.9 \times 105
D) 6.0×10236.0 \times 1023
E) 1.2×10241.2 \times 10^{24}
Question
Aluminum has a resistivity of 2.65×108Ω×m2.65 \times 10^{-8} \Omega \times \mathrm{m} . What is the resistance of 15 m15 \mathrm{~m} of aluminum wire with cross-sectional area 1.0 mm21.0 \mathrm{~mm}^{2} ?

A) 56Ω56 \Omega
B) 0.13Ω0.13 \Omega
C) 1.3×102Ω1.3 \times 102 \Omega
D) 0.40Ω0.40 \Omega
E) 1.6Ω1.6 \Omega
Question
One hundred meters of a certain type of wire has a resistance of 7.2Ω7.2 \Omega . What is the resistance of 2.5 m2.5 \mathrm{~m} of this wire?

A) 1.8Ω1.8 \Omega
B) 0.18Ω0.18 \Omega
C) 18Ω18 \Omega
D) 0.30Ω0.30 \Omega
E) 3.0Ω3.0 \Omega
Question
One hundred meters of 2.00 mm2.00 \mathrm{~mm} diameter wire has a resistance of 0.532Ω0.532 \Omega . What is the resistivity of the material from which the wire is made?

A) 1.67×108Ωm1.67 \times 10^{-8} \Omega \cdot \mathrm{m}
B) 5.40×108Ωm5.40 \times 10^{-8} \Omega \cdot \mathrm{m}
C) 2.35×108Ωm2.35 \times 10^{-8} \Omega \cdot \mathrm{m}
D) 2.65×108Ωm2.65 \times 10-8 \Omega \cdot \mathrm{m}
E) 1.59×108Ωm1.59 \times 10^{-8} \Omega \cdot \mathrm{m}
Question
The resistance of a wire increases by 3.9%3.9 \% when the temperature of the wire is raised 100C100^{\circ} \mathrm{C} . What is the temperature coefficient of resistivity of the wire material?

A) 0.00039C10.00039^{\circ} \mathrm{C}^{-1}
B) 0.039C10.039^{\circ} \mathrm{C}^{-1}
C) 3.9C13.9^{\circ} \mathrm{C}^{-1}
D) 0.0039C10.0039^{\circ} \mathrm{C}^{-1}
E) 0.39C10.39^{\circ} \mathrm{C}^{-1}
Question
A 1.56V1.56-\mathrm{V} battery has an internal resistance of 0.120Ω0.120 \Omega . What is the maximum current that can be drawn from this battery?

A) 13.0 A13.0 \mathrm{~A}
B) 7.50 A7.50 \mathrm{~A}
C) infinite (or at least 1000s of amps)
D) 0.190 A0.190 \mathrm{~A}
E) 1.56 A1.56 \mathrm{~A}
Question
The potential difference of 12.4 V12.4 \mathrm{~V} is placed across a 4.1Ω4.1 \Omega resistor. What is the current in the resistor?

A) 0.33 A0.33 \mathrm{~A}
B) 8.3 A8.3 \mathrm{~A}
C) 3.0 A3.0 \mathrm{~A}
D) 51 A51 \mathrm{~A}
E) 16 A16 \mathrm{~A}
Question
A 12.0 V12.0 \mathrm{~V} battery is connected across a 4.00Ω4.00 \Omega resistor. If the current through the resistor is 2.80 A2.80 \mathrm{~A} , what is the terminal voltage of the battery?

A) 11.2 V11.2 \mathrm{~V}
B) 11.6 V11.6 \mathrm{~V}
C) 9.6 V9.6 \mathrm{~V}
D) 12.0 V12.0 \mathrm{~V}
E) 12.8 V12.8 \mathrm{~V}
Question
A 12.0 V12.0 \mathrm{~V} battery has an internal resistance of 0.080Ω0.080 \Omega . If the battery supplies 100 A100 \mathrm{~A} when connected to a starter motor, what is the resistance of the motor?

A) 0.080Ω0.080 \Omega
B) 0.0012Ω0.0012 \Omega
C) 0.20Ω0.20 \Omega
D) 0.040Ω0.040 \Omega
E) 0.012Ω0.012 \Omega
Question
The potential differences around a loop ABCAA B C A in a circuit (starting at AA and going around the loop back to A) are VAB=10 V, VBC=6.0 V\mathrm{V}_{\mathrm{AB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BC}}=6.0 \mathrm{~V} , and VCA\mathrm{V}_{\mathrm{CA}} . What is VCA\mathrm{V}_{\mathrm{CA}} ?

A) 16 V16 \mathrm{~V}
B) 4.0 V4.0 \mathrm{~V}
C) 16 V-16 \mathrm{~V}
D) 12 V-12 \mathrm{~V}
E) 4.0 V-4.0 \mathrm{~V}
Question
A 6.0Ω6.0 \Omega resistor and a 3.0Ω3.0 \Omega resistor are connected in parallel to a 1.5 V1.5 \mathrm{~V} battery of negligible internal resistance. What is the current in the 3.0Ω3.0 \Omega resistor?

A) 0.75 A0.75 \mathrm{~A}
B) 0.25 A0.25 \mathrm{~A}
C) 2.0 A2.0 \mathrm{~A}
D) 0.17 A0.17 \mathrm{~A}
E) 0.50 A0.50 \mathrm{~A}
Question
What is the resistance of this combination of resistors?
 <strong>What is the resistance of this combination of resistors?  </strong> A)  15 \Omega  B)  4.0 \Omega  C)  13 \Omega  D)  14 \Omega  E)  12 \Omega  <div style=padding-top: 35px>

A) 15Ω15 \Omega
B) 4.0Ω4.0 \Omega
C) 13Ω13 \Omega
D) 14Ω14 \Omega
E) 12Ω12 \Omega
Question
Two capacitors of values 6.0mF6.0 \mathrm{mF} and 9.0mF9.0 \mathrm{mF} are connected in series. What is the capacitance of the combination?

A) 3.0mF3.0 \mathrm{mF}
B) 15mF15 \mathrm{mF}
C) 3.6mF3.6 \mathrm{mF}
D) 7.5mF7.5 \mathrm{mF}
E) 54mF54 \mathrm{mF}
Question
Two capacitors of values 6.00mF6.00 \mathrm{mF} and 9.00mF9.00 \mathrm{mF} are connected in series to a 30.0 V30.0 \mathrm{~V} power supply. What is the resulting charge on the 6.00mF6.00 \mathrm{mF} capacitor?

A) 180mC180 \mathrm{mC}
B) 200mC200 \mathrm{mC}
C) 108mC108 \mathrm{mC}
D) 270mC270 \mathrm{mC}
E) 90.0mC90.0 \mathrm{mC}
Question
Capacitors of values 1.0 F,2.0 F,3.0 F1.0 \mathrm{~F}, 2.0 \mathrm{~F}, 3.0 \mathrm{~F} , and 6.0 F6.0 \mathrm{~F} are connected in series across a 12 V12 \mathrm{~V} power supply. Which capacitor has the greatest potential difference across it?

A) the 6.0 F6.0 \mathrm{~F} capacitor
B) the 2.0 F2.0 \mathrm{~F} capacitor
C) the 1.0 F1.0 \mathrm{~F} capacitor
D) the 3.0 F3.0 \mathrm{~F} capacitor
E) they all are equal
Question
Capacitors of values 1.0 F,2.0 F,3.0 F1.0 \mathrm{~F}, 2.0 \mathrm{~F}, 3.0 \mathrm{~F} , and 6.0 F6.0 \mathrm{~F} are connected in series across a 12 V12 \mathrm{~V} power supply. Which capacitor has the greatest charge on it?

A) the 2.0 F2.0 \mathrm{~F} capacitor
B) the 6.0 F6.0 \mathrm{~F} capacitor
C) the 1.0 F1.0 \mathrm{~F} capacitor
D) the 3.0 F3.0 \mathrm{~F} capacitor
E) they are all equal
Question
The arrangement shown is composed of four 6.0mF6.0 \mathrm{mF} capacitors. What is the capacitance of the combination?
 <strong>The arrangement shown is composed of four  6.0 \mathrm{mF}  capacitors. What is the capacitance of the combination?  </strong> A)  24.0 \mathrm{mF}  B)  8.0 \mathrm{mF}  C)  9.0 \mathrm{mF}  D)  4.5 \mathrm{mF}  E)  12.5 \mathrm{mF}  <div style=padding-top: 35px>

A) 24.0mF24.0 \mathrm{mF}
B) 8.0mF8.0 \mathrm{mF}
C) 9.0mF9.0 \mathrm{mF}
D) 4.5mF4.5 \mathrm{mF}
E) 12.5mF12.5 \mathrm{mF}
Question
If R1=6Ω,R2=8Ω,R3=2Ω,ε1=4 V\mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=8 \Omega, \mathrm{R}_{3}=2 \Omega, \varepsilon_{1}=4 \mathrm{~V} , and ε2=14 V\varepsilon_{2}=14 \mathrm{~V} , what is the current in R2\mathrm{R}_{2} ?
 <strong>If  \mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=8 \Omega, \mathrm{R}_{3}=2 \Omega, \varepsilon_{1}=4 \mathrm{~V} , and  \varepsilon_{2}=14 \mathrm{~V} , what is the current in  \mathrm{R}_{2}  ?  </strong> A) 1 A down B)  2.5 \mathrm{~A}  up C) 2.5 A down D) 5 A down E)  1 \mathrm{~A}  up <div style=padding-top: 35px>

A) 1 A down
B) 2.5 A2.5 \mathrm{~A} up
C) 2.5 A down
D) 5 A down
E) 1 A1 \mathrm{~A} up
Question
If R1=6.0Ω,R2=8.0Ω,R3=2.0Ω,ε1=4.0 V\mathrm{R}_{1}=6.0 \Omega, \mathrm{R}_{2}=8.0 \Omega, \mathrm{R}_{3}=2.0 \Omega, \varepsilon_{1}=4.0 \mathrm{~V} , and ε2=14 V\varepsilon_{2}=14 \mathrm{~V} , what is the power supplied to the circuit by ε1\varepsilon_{1} ?
 <strong>If  \mathrm{R}_{1}=6.0 \Omega, \mathrm{R}_{2}=8.0 \Omega, \mathrm{R}_{3}=2.0 \Omega, \varepsilon_{1}=4.0 \mathrm{~V} , and  \varepsilon_{2}=14 \mathrm{~V} , what is the power supplied to the circuit by  \varepsilon_{1}  ?  </strong> A)  4.0 \mathrm{~W}  B)  16 \mathrm{~W}  C)  20 \mathrm{~W}  D)  8.0 \mathrm{~W}  E)  12 \mathrm{~W}  <div style=padding-top: 35px>

A) 4.0 W4.0 \mathrm{~W}
B) 16 W16 \mathrm{~W}
C) 20 W20 \mathrm{~W}
D) 8.0 W8.0 \mathrm{~W}
E) 12 W12 \mathrm{~W}
Question
Three resistors, R1=4.0Ω,R2=3.0Ω\mathrm{R}_{1}=4.0 \Omega, \mathrm{R}_{2}=3.0 \Omega , and R3=2.0Ω\mathrm{R}_{3}=2.0 \Omega , are connected in series to a 9.0 V9.0 \mathrm{~V} battery. What is the total power dissipated by the circuit?

A) 2.0 W2.0 \mathrm{~W}
B) 20 W20 \mathrm{~W}
C) 4.0 W4.0 \mathrm{~W}
D) 5.1 W5.1 \mathrm{~W}
E) 9.0 W9.0 \mathrm{~W}
Question
Three resistors, R1=4Ω,R2=3.0Ω\mathrm{R}_{1}=4 \Omega, \mathrm{R}_{2}=3.0 \Omega , and R3=2.0Ω\mathrm{R}_{3}=2.0 \Omega , are connected in series to a 9.0 V9.0 \mathrm{~V} battery. What is the power dissipated by R1\mathrm{R}_{1} ?

A) 9.0 W9.0 \mathrm{~W}
B) 2.3 W2.3 \mathrm{~W}
C) 5.1 W5.1 \mathrm{~W}
D) 2.0 W2.0 \mathrm{~W}
E) 4.0 W4.0 \mathrm{~W}
Question
Three resistors, R1=9.0Ω,R2=3.0Ω\mathrm{R}_{1}=9.0 \Omega, \mathrm{R}_{2}=3.0 \Omega , and R3=1.0Ω\mathrm{R}_{3}=1.0 \Omega , are connected in parallel to a 9.0 V9.0 \mathrm{~V} battery. What is the power dissipated by R2\mathrm{R}_{2} ?

A) 81 W81 \mathrm{~W}
B) 9.0 W9.0 \mathrm{~W}
C) 27 W27 \mathrm{~W}
D) 2.0 W2.0 \mathrm{~W}
E) 3.0 W3.0 \mathrm{~W}
Question
Three resistors, R1=9.00Ω,R2=3.00Ω\mathrm{R}_{1}=9.00 \Omega, \mathrm{R}_{2}=3.00 \Omega , and R3=1.00Ω\mathrm{R}_{3}=1.00 \Omega , are connected in parallel to a 9.00 V9.00 \mathrm{~V} battery. What is the total power dissipated in the circuit?

A) 117 W117 \mathrm{~W}
B) 80.1 W80.1 \mathrm{~W}
C) 99.0 W99.0 \mathrm{~W}
D) 180 W180 \mathrm{~W}
E) 18.0 W18.0 \mathrm{~W}
Question
The watt, W\mathrm{W} , is equivalent to which of the following?

A) C/J\mathrm{C} / \mathrm{J}
B) AV\mathrm{A} \cdot \mathrm{V}
C) A/V\mathrm{A} / \mathrm{V}
D) CJ\mathrm{C} \cdot \mathrm{J}
E) V2/A\mathrm{V} 2 / \mathrm{A}
Question
A 2.0Ω2.0 \Omega resistor is connected across a 6.0 V6.0 \mathrm{~V} power supply. An ammeter with internal resistance of 1.0Ω1.0 \Omega is used to measure the current in this circuit. What is the ammeter reading?

A) 1.0 A1.0 \mathrm{~A}
B) 2.0 A2.0 \mathrm{~A}
C) 3.0 A3.0 \mathrm{~A}
D) 4.0 A4.0 \mathrm{~A}
E) an ammeter with less resistance than the rest of the circuit will not produce a reading
Question
A series circuit consists of a 12.0 V12.0 \mathrm{~V} source of emf, a 2.00mF2.00 \mathrm{mF} capacitor, a 1000Ω1000 \Omega resistor, and a switch. What is the time constant for this circuit?

A) 0.0825 s0.0825 \mathrm{~s}
B) 1.00 ms1.00 \mathrm{~ms}
C) 10.0 s10.0 \mathrm{~s}
D) 2.00 s2.00 \mathrm{~s}
E) 0.693 s0.693 \mathrm{~s}
Question
Copper has 8.5×10288.5 \times 1028 current-carrying electrons per m3\mathrm{m} 3 . A copper wire of radius 0.15 mm0.15 \mathrm{~mm} carries a current of 17 mA17 \mathrm{~mA} . What is the average drift velocity for the electrons?

A) 2.7×109 m/s2.7 \times 10^{-9} \mathrm{~m} / \mathrm{s}
B) 18×106 m/s18 \times 10^{-6} \mathrm{~m} / \mathrm{s}
C) 56×106 m/s56 \times 10^{-6} \mathrm{~m} / \mathrm{s}
D) more information is needed for this calculation
Question
A wire of radius 0.15 mm0.15 \mathrm{~mm} is made of an unknown metal and carries a current of 8.4 mA8.4 \mathrm{~mA} . The drift velocity for electrons in the wire is measured to be 36×106 m/s36 \times 10^{-6} \mathrm{~m} / \mathrm{s} . What is the charge carrier density of the metal from which the wire is made?

A) 2.1×1028 m32.1 \times 10^{28} \mathrm{~m}^{-3}
B) 4.2×1030 m34.2 \times 10^{30} \mathrm{~m}^{-3}
C) 1.3×1029 m31.3 \times 10^{29} \mathrm{~m}^{-3}
D) need more information to do this calculation.
Question
Copper has 8.5×10288.5 \times 10^{28} current carrying electrons per m3\mathrm{m}^{3} . A copper wire carries a current of 17 mA17 \mathrm{~mA} , and the drift velocity of the electrons is measured to be 18×106 m/s18 \times 10^{-6} \mathrm{~m} / \mathrm{s} . What is the wire's radius?

A) 1.5 mm1.5 \mathrm{~mm}
B) 0.15 mm0.15 \mathrm{~mm}
C) 2.7 mm2.7 \mathrm{~mm}
D) 0.27 mm0.27 \mathrm{~mm}
Question
A carbon resistor is made of a cylinder of carbon, of length 1.5 cm1.5 \mathrm{~cm} . If the resistivity of carbon is 3.5×1053.5 \times 10^{-5} Ωm\Omega \cdot \mathrm{m} , and a potential difference of 0.15 V0.15 \mathrm{~V} causes a current of 12 A12 \mathrm{~A} to flow through the resistor, what is the radius of the cylinder?

A) 12 mm12 \mathrm{~mm}
B) 1.2 mm1.2 \mathrm{~mm}
C) 3.7 mm3.7 \mathrm{~mm}
D) 6.5 mm6.5 \mathrm{~mm}
Question
A carbon resistor is made of a cylinder of carbon, of diameter 7.4 mm7.4 \mathrm{~mm} . If the resistivity of carbon is 3.5×103.5 \times 10 5 Wm-5 \mathrm{~W} \cdot \mathrm{m} , and a potential difference of 0.15 V0.15 \mathrm{~V} causes a current of 12 A12 \mathrm{~A} to flow through the resistor, what is the length of the cylinder?

A) 1.5 cm1.5 \mathrm{~cm}
B) 0.5 cm0.5 \mathrm{~cm}
C) 6.1 cm6.1 \mathrm{~cm}
D) 0.15 cm0.15 \mathrm{~cm}
Question
A circuit joins points A,B,CA, B, C and DD into a single square loop. The voltage drops from AA to B,BB, B to CC , and CC to D\mathrm{D} , are 5.2 V,2.1 V-5.2 \mathrm{~V}, 2.1 \mathrm{~V} , and 1.0 V1.0 \mathrm{~V} , respectively. If one were to measure the voltage drop from C\mathrm{C} to B\mathrm{B} , one would obtain:

A) 6.1 V-6.1 \mathrm{~V}
B) 2.1 V2.1 \mathrm{~V}
C) 2.1 V-2.1 \mathrm{~V}
D) 4.1 V-4.1 \mathrm{~V}
E) 4.1 V4.1 \mathrm{~V}
F) 6.1 V6.1 \mathrm{~V}
Question
Two identical circuits have a capacitor in series with a resistor and a switch. In circuit AA , the resistor has resistance R\mathrm{R} , while in circuit B\mathrm{B} , its resistance is 4R4 \mathrm{R} . The capacitors are identical. Each capacitor begins fully charged, and each circuit is open. When each circuit is completed (i.e., the switch in them is closed), the capacitor will begin to discharge. If a time tt is required for circuit A's capacitor to fully discharge (say, by 99%99 \% ), what time will be required for circuit B's capacitor to do the same?

A) 2t2 \mathrm{t}
B) 0.25t0.25 \mathrm{t}
C) t\mathrm{t}
D) 4t4 \mathrm{t}
E) 0.5t0.5 \mathrm{t}
Question
What is the ratio of the time it takes for the capacitor in a series RC circuit to reach 90%90 \% of maximum charge from an uncharged state, to the time required for the capacitor to discharge from a fully charged state to 90%90 \% ?

A) Answer depends on the particular values of R\mathrm{R} and C\mathrm{C} .
B) 9 times as long
C) The same time is required.
D) 1/91 / 9 as long
E) 22 times as long
F) 1/221 / 22 times as long
Question
Two ceramic cylinders have the following properties. Cylinder A\mathrm{A} has radius R\mathrm{R} and height 2H2 \mathrm{H} , while Cylinder BB has radius 3R3 R and height H/4H / 4 . Their resistances are measured, and it is found that RA/RB=2R_{A} / R_{B}=2 . What is the ratio of the resistivities ρA/ρB\rho_{\mathrm{A}} / \rho_{\mathrm{B}} of the ceramics from which the cylinders are made?

A) 1/361 / 36
B) 16/916 / 9
C) 9/89 / 8
D) 9/49 / 4
E) 36
F) 1/181 / 18
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/36
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 18: Electric Current and Circuits
1
A 2.50 A2.50 \mathrm{~A} current is carried by a copper wire of radius 1.0 mm1.0 \mathrm{~mm} . If the density of conduction electrons is 8.0×8.0 \times 1028 m31028 \mathrm{~m}^{-3} , what is the drift velocity of the conduction electrons?

A) 6.2×105 m/s6.2 \times 10^{-5} \mathrm{~m} / \mathrm{s}
B) 6.2×104 m/s6.2 \times 10^{-4} \mathrm{~m} / \mathrm{s}
C) 3.2×104 m/s3.2 \times 10^{-4} \mathrm{~m} / \mathrm{s}
D) 3.0×108 m/s3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
E) 1.6×105 m/s1.6 \times 10^{-5} \mathrm{~m} / \mathrm{s}
6.2×105 m/s6.2 \times 10^{-5} \mathrm{~m} / \mathrm{s}
2
Silver contains 5.8×10285.8 \times 1028 conduction electrons per m3\mathrm{m} 3 . How many conduction electrons are in a 1.0 m1.0 \mathrm{~m} length of silver wire of diameter 2.6 mm2.6 \mathrm{~mm} ?

A) 3.1×10233.1 \times 1023
B) 4.7×1044.7 \times 10^{4}
C) 1.9×1051.9 \times 105
D) 6.0×10236.0 \times 1023
E) 1.2×10241.2 \times 10^{24}
3.1×10233.1 \times 1023
3
Aluminum has a resistivity of 2.65×108Ω×m2.65 \times 10^{-8} \Omega \times \mathrm{m} . What is the resistance of 15 m15 \mathrm{~m} of aluminum wire with cross-sectional area 1.0 mm21.0 \mathrm{~mm}^{2} ?

A) 56Ω56 \Omega
B) 0.13Ω0.13 \Omega
C) 1.3×102Ω1.3 \times 102 \Omega
D) 0.40Ω0.40 \Omega
E) 1.6Ω1.6 \Omega
0.40Ω0.40 \Omega
4
One hundred meters of a certain type of wire has a resistance of 7.2Ω7.2 \Omega . What is the resistance of 2.5 m2.5 \mathrm{~m} of this wire?

A) 1.8Ω1.8 \Omega
B) 0.18Ω0.18 \Omega
C) 18Ω18 \Omega
D) 0.30Ω0.30 \Omega
E) 3.0Ω3.0 \Omega
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
5
One hundred meters of 2.00 mm2.00 \mathrm{~mm} diameter wire has a resistance of 0.532Ω0.532 \Omega . What is the resistivity of the material from which the wire is made?

A) 1.67×108Ωm1.67 \times 10^{-8} \Omega \cdot \mathrm{m}
B) 5.40×108Ωm5.40 \times 10^{-8} \Omega \cdot \mathrm{m}
C) 2.35×108Ωm2.35 \times 10^{-8} \Omega \cdot \mathrm{m}
D) 2.65×108Ωm2.65 \times 10-8 \Omega \cdot \mathrm{m}
E) 1.59×108Ωm1.59 \times 10^{-8} \Omega \cdot \mathrm{m}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
6
The resistance of a wire increases by 3.9%3.9 \% when the temperature of the wire is raised 100C100^{\circ} \mathrm{C} . What is the temperature coefficient of resistivity of the wire material?

A) 0.00039C10.00039^{\circ} \mathrm{C}^{-1}
B) 0.039C10.039^{\circ} \mathrm{C}^{-1}
C) 3.9C13.9^{\circ} \mathrm{C}^{-1}
D) 0.0039C10.0039^{\circ} \mathrm{C}^{-1}
E) 0.39C10.39^{\circ} \mathrm{C}^{-1}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
7
A 1.56V1.56-\mathrm{V} battery has an internal resistance of 0.120Ω0.120 \Omega . What is the maximum current that can be drawn from this battery?

A) 13.0 A13.0 \mathrm{~A}
B) 7.50 A7.50 \mathrm{~A}
C) infinite (or at least 1000s of amps)
D) 0.190 A0.190 \mathrm{~A}
E) 1.56 A1.56 \mathrm{~A}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
8
The potential difference of 12.4 V12.4 \mathrm{~V} is placed across a 4.1Ω4.1 \Omega resistor. What is the current in the resistor?

A) 0.33 A0.33 \mathrm{~A}
B) 8.3 A8.3 \mathrm{~A}
C) 3.0 A3.0 \mathrm{~A}
D) 51 A51 \mathrm{~A}
E) 16 A16 \mathrm{~A}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
9
A 12.0 V12.0 \mathrm{~V} battery is connected across a 4.00Ω4.00 \Omega resistor. If the current through the resistor is 2.80 A2.80 \mathrm{~A} , what is the terminal voltage of the battery?

A) 11.2 V11.2 \mathrm{~V}
B) 11.6 V11.6 \mathrm{~V}
C) 9.6 V9.6 \mathrm{~V}
D) 12.0 V12.0 \mathrm{~V}
E) 12.8 V12.8 \mathrm{~V}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
10
A 12.0 V12.0 \mathrm{~V} battery has an internal resistance of 0.080Ω0.080 \Omega . If the battery supplies 100 A100 \mathrm{~A} when connected to a starter motor, what is the resistance of the motor?

A) 0.080Ω0.080 \Omega
B) 0.0012Ω0.0012 \Omega
C) 0.20Ω0.20 \Omega
D) 0.040Ω0.040 \Omega
E) 0.012Ω0.012 \Omega
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
11
The potential differences around a loop ABCAA B C A in a circuit (starting at AA and going around the loop back to A) are VAB=10 V, VBC=6.0 V\mathrm{V}_{\mathrm{AB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BC}}=6.0 \mathrm{~V} , and VCA\mathrm{V}_{\mathrm{CA}} . What is VCA\mathrm{V}_{\mathrm{CA}} ?

A) 16 V16 \mathrm{~V}
B) 4.0 V4.0 \mathrm{~V}
C) 16 V-16 \mathrm{~V}
D) 12 V-12 \mathrm{~V}
E) 4.0 V-4.0 \mathrm{~V}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
12
A 6.0Ω6.0 \Omega resistor and a 3.0Ω3.0 \Omega resistor are connected in parallel to a 1.5 V1.5 \mathrm{~V} battery of negligible internal resistance. What is the current in the 3.0Ω3.0 \Omega resistor?

A) 0.75 A0.75 \mathrm{~A}
B) 0.25 A0.25 \mathrm{~A}
C) 2.0 A2.0 \mathrm{~A}
D) 0.17 A0.17 \mathrm{~A}
E) 0.50 A0.50 \mathrm{~A}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
13
What is the resistance of this combination of resistors?
 <strong>What is the resistance of this combination of resistors?  </strong> A)  15 \Omega  B)  4.0 \Omega  C)  13 \Omega  D)  14 \Omega  E)  12 \Omega

A) 15Ω15 \Omega
B) 4.0Ω4.0 \Omega
C) 13Ω13 \Omega
D) 14Ω14 \Omega
E) 12Ω12 \Omega
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
14
Two capacitors of values 6.0mF6.0 \mathrm{mF} and 9.0mF9.0 \mathrm{mF} are connected in series. What is the capacitance of the combination?

A) 3.0mF3.0 \mathrm{mF}
B) 15mF15 \mathrm{mF}
C) 3.6mF3.6 \mathrm{mF}
D) 7.5mF7.5 \mathrm{mF}
E) 54mF54 \mathrm{mF}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
15
Two capacitors of values 6.00mF6.00 \mathrm{mF} and 9.00mF9.00 \mathrm{mF} are connected in series to a 30.0 V30.0 \mathrm{~V} power supply. What is the resulting charge on the 6.00mF6.00 \mathrm{mF} capacitor?

A) 180mC180 \mathrm{mC}
B) 200mC200 \mathrm{mC}
C) 108mC108 \mathrm{mC}
D) 270mC270 \mathrm{mC}
E) 90.0mC90.0 \mathrm{mC}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
16
Capacitors of values 1.0 F,2.0 F,3.0 F1.0 \mathrm{~F}, 2.0 \mathrm{~F}, 3.0 \mathrm{~F} , and 6.0 F6.0 \mathrm{~F} are connected in series across a 12 V12 \mathrm{~V} power supply. Which capacitor has the greatest potential difference across it?

A) the 6.0 F6.0 \mathrm{~F} capacitor
B) the 2.0 F2.0 \mathrm{~F} capacitor
C) the 1.0 F1.0 \mathrm{~F} capacitor
D) the 3.0 F3.0 \mathrm{~F} capacitor
E) they all are equal
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
17
Capacitors of values 1.0 F,2.0 F,3.0 F1.0 \mathrm{~F}, 2.0 \mathrm{~F}, 3.0 \mathrm{~F} , and 6.0 F6.0 \mathrm{~F} are connected in series across a 12 V12 \mathrm{~V} power supply. Which capacitor has the greatest charge on it?

A) the 2.0 F2.0 \mathrm{~F} capacitor
B) the 6.0 F6.0 \mathrm{~F} capacitor
C) the 1.0 F1.0 \mathrm{~F} capacitor
D) the 3.0 F3.0 \mathrm{~F} capacitor
E) they are all equal
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
18
The arrangement shown is composed of four 6.0mF6.0 \mathrm{mF} capacitors. What is the capacitance of the combination?
 <strong>The arrangement shown is composed of four  6.0 \mathrm{mF}  capacitors. What is the capacitance of the combination?  </strong> A)  24.0 \mathrm{mF}  B)  8.0 \mathrm{mF}  C)  9.0 \mathrm{mF}  D)  4.5 \mathrm{mF}  E)  12.5 \mathrm{mF}

A) 24.0mF24.0 \mathrm{mF}
B) 8.0mF8.0 \mathrm{mF}
C) 9.0mF9.0 \mathrm{mF}
D) 4.5mF4.5 \mathrm{mF}
E) 12.5mF12.5 \mathrm{mF}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
19
If R1=6Ω,R2=8Ω,R3=2Ω,ε1=4 V\mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=8 \Omega, \mathrm{R}_{3}=2 \Omega, \varepsilon_{1}=4 \mathrm{~V} , and ε2=14 V\varepsilon_{2}=14 \mathrm{~V} , what is the current in R2\mathrm{R}_{2} ?
 <strong>If  \mathrm{R}_{1}=6 \Omega, \mathrm{R}_{2}=8 \Omega, \mathrm{R}_{3}=2 \Omega, \varepsilon_{1}=4 \mathrm{~V} , and  \varepsilon_{2}=14 \mathrm{~V} , what is the current in  \mathrm{R}_{2}  ?  </strong> A) 1 A down B)  2.5 \mathrm{~A}  up C) 2.5 A down D) 5 A down E)  1 \mathrm{~A}  up

A) 1 A down
B) 2.5 A2.5 \mathrm{~A} up
C) 2.5 A down
D) 5 A down
E) 1 A1 \mathrm{~A} up
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
20
If R1=6.0Ω,R2=8.0Ω,R3=2.0Ω,ε1=4.0 V\mathrm{R}_{1}=6.0 \Omega, \mathrm{R}_{2}=8.0 \Omega, \mathrm{R}_{3}=2.0 \Omega, \varepsilon_{1}=4.0 \mathrm{~V} , and ε2=14 V\varepsilon_{2}=14 \mathrm{~V} , what is the power supplied to the circuit by ε1\varepsilon_{1} ?
 <strong>If  \mathrm{R}_{1}=6.0 \Omega, \mathrm{R}_{2}=8.0 \Omega, \mathrm{R}_{3}=2.0 \Omega, \varepsilon_{1}=4.0 \mathrm{~V} , and  \varepsilon_{2}=14 \mathrm{~V} , what is the power supplied to the circuit by  \varepsilon_{1}  ?  </strong> A)  4.0 \mathrm{~W}  B)  16 \mathrm{~W}  C)  20 \mathrm{~W}  D)  8.0 \mathrm{~W}  E)  12 \mathrm{~W}

A) 4.0 W4.0 \mathrm{~W}
B) 16 W16 \mathrm{~W}
C) 20 W20 \mathrm{~W}
D) 8.0 W8.0 \mathrm{~W}
E) 12 W12 \mathrm{~W}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
21
Three resistors, R1=4.0Ω,R2=3.0Ω\mathrm{R}_{1}=4.0 \Omega, \mathrm{R}_{2}=3.0 \Omega , and R3=2.0Ω\mathrm{R}_{3}=2.0 \Omega , are connected in series to a 9.0 V9.0 \mathrm{~V} battery. What is the total power dissipated by the circuit?

A) 2.0 W2.0 \mathrm{~W}
B) 20 W20 \mathrm{~W}
C) 4.0 W4.0 \mathrm{~W}
D) 5.1 W5.1 \mathrm{~W}
E) 9.0 W9.0 \mathrm{~W}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
22
Three resistors, R1=4Ω,R2=3.0Ω\mathrm{R}_{1}=4 \Omega, \mathrm{R}_{2}=3.0 \Omega , and R3=2.0Ω\mathrm{R}_{3}=2.0 \Omega , are connected in series to a 9.0 V9.0 \mathrm{~V} battery. What is the power dissipated by R1\mathrm{R}_{1} ?

A) 9.0 W9.0 \mathrm{~W}
B) 2.3 W2.3 \mathrm{~W}
C) 5.1 W5.1 \mathrm{~W}
D) 2.0 W2.0 \mathrm{~W}
E) 4.0 W4.0 \mathrm{~W}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
23
Three resistors, R1=9.0Ω,R2=3.0Ω\mathrm{R}_{1}=9.0 \Omega, \mathrm{R}_{2}=3.0 \Omega , and R3=1.0Ω\mathrm{R}_{3}=1.0 \Omega , are connected in parallel to a 9.0 V9.0 \mathrm{~V} battery. What is the power dissipated by R2\mathrm{R}_{2} ?

A) 81 W81 \mathrm{~W}
B) 9.0 W9.0 \mathrm{~W}
C) 27 W27 \mathrm{~W}
D) 2.0 W2.0 \mathrm{~W}
E) 3.0 W3.0 \mathrm{~W}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
24
Three resistors, R1=9.00Ω,R2=3.00Ω\mathrm{R}_{1}=9.00 \Omega, \mathrm{R}_{2}=3.00 \Omega , and R3=1.00Ω\mathrm{R}_{3}=1.00 \Omega , are connected in parallel to a 9.00 V9.00 \mathrm{~V} battery. What is the total power dissipated in the circuit?

A) 117 W117 \mathrm{~W}
B) 80.1 W80.1 \mathrm{~W}
C) 99.0 W99.0 \mathrm{~W}
D) 180 W180 \mathrm{~W}
E) 18.0 W18.0 \mathrm{~W}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
25
The watt, W\mathrm{W} , is equivalent to which of the following?

A) C/J\mathrm{C} / \mathrm{J}
B) AV\mathrm{A} \cdot \mathrm{V}
C) A/V\mathrm{A} / \mathrm{V}
D) CJ\mathrm{C} \cdot \mathrm{J}
E) V2/A\mathrm{V} 2 / \mathrm{A}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
26
A 2.0Ω2.0 \Omega resistor is connected across a 6.0 V6.0 \mathrm{~V} power supply. An ammeter with internal resistance of 1.0Ω1.0 \Omega is used to measure the current in this circuit. What is the ammeter reading?

A) 1.0 A1.0 \mathrm{~A}
B) 2.0 A2.0 \mathrm{~A}
C) 3.0 A3.0 \mathrm{~A}
D) 4.0 A4.0 \mathrm{~A}
E) an ammeter with less resistance than the rest of the circuit will not produce a reading
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
27
A series circuit consists of a 12.0 V12.0 \mathrm{~V} source of emf, a 2.00mF2.00 \mathrm{mF} capacitor, a 1000Ω1000 \Omega resistor, and a switch. What is the time constant for this circuit?

A) 0.0825 s0.0825 \mathrm{~s}
B) 1.00 ms1.00 \mathrm{~ms}
C) 10.0 s10.0 \mathrm{~s}
D) 2.00 s2.00 \mathrm{~s}
E) 0.693 s0.693 \mathrm{~s}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
28
Copper has 8.5×10288.5 \times 1028 current-carrying electrons per m3\mathrm{m} 3 . A copper wire of radius 0.15 mm0.15 \mathrm{~mm} carries a current of 17 mA17 \mathrm{~mA} . What is the average drift velocity for the electrons?

A) 2.7×109 m/s2.7 \times 10^{-9} \mathrm{~m} / \mathrm{s}
B) 18×106 m/s18 \times 10^{-6} \mathrm{~m} / \mathrm{s}
C) 56×106 m/s56 \times 10^{-6} \mathrm{~m} / \mathrm{s}
D) more information is needed for this calculation
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
29
A wire of radius 0.15 mm0.15 \mathrm{~mm} is made of an unknown metal and carries a current of 8.4 mA8.4 \mathrm{~mA} . The drift velocity for electrons in the wire is measured to be 36×106 m/s36 \times 10^{-6} \mathrm{~m} / \mathrm{s} . What is the charge carrier density of the metal from which the wire is made?

A) 2.1×1028 m32.1 \times 10^{28} \mathrm{~m}^{-3}
B) 4.2×1030 m34.2 \times 10^{30} \mathrm{~m}^{-3}
C) 1.3×1029 m31.3 \times 10^{29} \mathrm{~m}^{-3}
D) need more information to do this calculation.
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
30
Copper has 8.5×10288.5 \times 10^{28} current carrying electrons per m3\mathrm{m}^{3} . A copper wire carries a current of 17 mA17 \mathrm{~mA} , and the drift velocity of the electrons is measured to be 18×106 m/s18 \times 10^{-6} \mathrm{~m} / \mathrm{s} . What is the wire's radius?

A) 1.5 mm1.5 \mathrm{~mm}
B) 0.15 mm0.15 \mathrm{~mm}
C) 2.7 mm2.7 \mathrm{~mm}
D) 0.27 mm0.27 \mathrm{~mm}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
31
A carbon resistor is made of a cylinder of carbon, of length 1.5 cm1.5 \mathrm{~cm} . If the resistivity of carbon is 3.5×1053.5 \times 10^{-5} Ωm\Omega \cdot \mathrm{m} , and a potential difference of 0.15 V0.15 \mathrm{~V} causes a current of 12 A12 \mathrm{~A} to flow through the resistor, what is the radius of the cylinder?

A) 12 mm12 \mathrm{~mm}
B) 1.2 mm1.2 \mathrm{~mm}
C) 3.7 mm3.7 \mathrm{~mm}
D) 6.5 mm6.5 \mathrm{~mm}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
32
A carbon resistor is made of a cylinder of carbon, of diameter 7.4 mm7.4 \mathrm{~mm} . If the resistivity of carbon is 3.5×103.5 \times 10 5 Wm-5 \mathrm{~W} \cdot \mathrm{m} , and a potential difference of 0.15 V0.15 \mathrm{~V} causes a current of 12 A12 \mathrm{~A} to flow through the resistor, what is the length of the cylinder?

A) 1.5 cm1.5 \mathrm{~cm}
B) 0.5 cm0.5 \mathrm{~cm}
C) 6.1 cm6.1 \mathrm{~cm}
D) 0.15 cm0.15 \mathrm{~cm}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
33
A circuit joins points A,B,CA, B, C and DD into a single square loop. The voltage drops from AA to B,BB, B to CC , and CC to D\mathrm{D} , are 5.2 V,2.1 V-5.2 \mathrm{~V}, 2.1 \mathrm{~V} , and 1.0 V1.0 \mathrm{~V} , respectively. If one were to measure the voltage drop from C\mathrm{C} to B\mathrm{B} , one would obtain:

A) 6.1 V-6.1 \mathrm{~V}
B) 2.1 V2.1 \mathrm{~V}
C) 2.1 V-2.1 \mathrm{~V}
D) 4.1 V-4.1 \mathrm{~V}
E) 4.1 V4.1 \mathrm{~V}
F) 6.1 V6.1 \mathrm{~V}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
34
Two identical circuits have a capacitor in series with a resistor and a switch. In circuit AA , the resistor has resistance R\mathrm{R} , while in circuit B\mathrm{B} , its resistance is 4R4 \mathrm{R} . The capacitors are identical. Each capacitor begins fully charged, and each circuit is open. When each circuit is completed (i.e., the switch in them is closed), the capacitor will begin to discharge. If a time tt is required for circuit A's capacitor to fully discharge (say, by 99%99 \% ), what time will be required for circuit B's capacitor to do the same?

A) 2t2 \mathrm{t}
B) 0.25t0.25 \mathrm{t}
C) t\mathrm{t}
D) 4t4 \mathrm{t}
E) 0.5t0.5 \mathrm{t}
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
35
What is the ratio of the time it takes for the capacitor in a series RC circuit to reach 90%90 \% of maximum charge from an uncharged state, to the time required for the capacitor to discharge from a fully charged state to 90%90 \% ?

A) Answer depends on the particular values of R\mathrm{R} and C\mathrm{C} .
B) 9 times as long
C) The same time is required.
D) 1/91 / 9 as long
E) 22 times as long
F) 1/221 / 22 times as long
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
36
Two ceramic cylinders have the following properties. Cylinder A\mathrm{A} has radius R\mathrm{R} and height 2H2 \mathrm{H} , while Cylinder BB has radius 3R3 R and height H/4H / 4 . Their resistances are measured, and it is found that RA/RB=2R_{A} / R_{B}=2 . What is the ratio of the resistivities ρA/ρB\rho_{\mathrm{A}} / \rho_{\mathrm{B}} of the ceramics from which the cylinders are made?

A) 1/361 / 36
B) 16/916 / 9
C) 9/89 / 8
D) 9/49 / 4
E) 36
F) 1/181 / 18
Unlock Deck
Unlock for access to all 36 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 36 flashcards in this deck.