Deck 2: Motion Along a Line

Full screen (f)
exit full mode
Question
figure is a graph of vx(t)\mathrm{v}_{\mathrm{x}}(\mathrm{t}) for a car. Solve graphically for the distance traveled from t=10 s\mathrm{t}=10 \mathrm{~s} to t=15 s\mathrm{t}=15 \mathrm{~s} .
 <strong>figure is a graph of  \mathrm{v}_{\mathrm{x}}(\mathrm{t})  for a car. Solve graphically for the distance traveled from  \mathrm{t}=10 \mathrm{~s}  to  \mathrm{t}=15 \mathrm{~s} .  </strong> A)  75 \mathrm{~m}  B)  69 \mathrm{~m}  C)  67 \mathrm{~m}  D)  70 \mathrm{~m}  <div style=padding-top: 35px>

A) 75 m75 \mathrm{~m}
B) 69 m69 \mathrm{~m}
C) 67 m67 \mathrm{~m}
D) 70 m70 \mathrm{~m}
Use Space or
up arrow
down arrow
to flip the card.
Question
figure shows the graph of vxv_{x} versus time for an object moving along the xx -axis. Solve graphically for the distance traveled from t=9.0 s\mathrm{t}=9.0 \mathrm{~s} to t=13.0 s\mathrm{t}=13.0 \mathrm{~s} .
 <strong>figure shows the graph of  v_{x}  versus time for an object moving along the  x -axis. Solve graphically for the distance traveled from  \mathrm{t}=9.0 \mathrm{~s}  to  \mathrm{t}=13.0 \mathrm{~s} .  </strong> A)  84 \mathrm{~m}  B)  80 \mathrm{~m}  C)  60 \mathrm{~m}  D)  76 \mathrm{~m}  <div style=padding-top: 35px>

A) 84 m84 \mathrm{~m}
B) 80 m80 \mathrm{~m}
C) 60 m60 \mathrm{~m}
D) 76 m76 \mathrm{~m}
Question
car travels a distance of 100 km100 \mathrm{~km} in 2.00 hours. It then travels an additional distance of 60.0 km60.0 \mathrm{~km} in 1.00 hour. The average speed of the car for the entire trip is

A) 50.0 km/hr50.0 \mathrm{~km} / \mathrm{hr} .
B) 46.7 km/hr46.7 \mathrm{~km} / \mathrm{hr} .
C) 80.0 km/hr80.0 \mathrm{~km} / \mathrm{hr} .
D) 60.0 km/hr60.0 \mathrm{~km} / \mathrm{hr} .
E) 53.3 km/hr53.3 \mathrm{~km} / \mathrm{hr} .
Question
car travels at 50.0 km/hr50.0 \mathrm{~km} / \mathrm{hr} for 2.00 hours. It then travels an additional distance of 40.0 km40.0 \mathrm{~km} in 1.00 hour. The average speed of the car for the entire trip is

A) 30.0 km/hr30.0 \mathrm{~km} / \mathrm{hr} .
B) 53.3 km/hr53.3 \mathrm{~km} / \mathrm{hr} .
C) 57.1 km/hr57.1 \mathrm{~km} / \mathrm{hr} .
D) 61.0 km/hr61.0 \mathrm{~km} / \mathrm{hr} .
E) 46.7 km/hr46.7 \mathrm{~km} / \mathrm{hr} .
Question
car travels a distance of 140 km140 \mathrm{~km} at 70.0 km/hr70.0 \mathrm{~km} / \mathrm{hr} . It then travels an additional distance of 60.0 km60.0 \mathrm{~km} at 40.0 km/hr\mathrm{km} / \mathrm{hr} . The average speed is

A) 57.1 km/hr57.1 \mathrm{~km} / \mathrm{hr} .
B) 46.7 km/hr46.7 \mathrm{~km} / \mathrm{hr} .
C) 45.0 km/hr45.0 \mathrm{~km} / \mathrm{hr} .
D) 61.0 km/hr61.0 \mathrm{~km} / \mathrm{hr} .
E) 53.3 km/hr53.3 \mathrm{~km} / \mathrm{hr} .
Question
graph shows vx\mathrm{v}_{\mathrm{x}} versus t\mathrm{t} for an object moving along straight line. What is the acceleration axa_{x} at t=11 s\mathrm{t}=11 \mathrm{~s} ?
 <strong>graph shows  \mathrm{v}_{\mathrm{x}}  versus  \mathrm{t}  for an object moving along straight line. What is the acceleration  a_{x}  at  \mathrm{t}=11 \mathrm{~s}  ?  </strong> A)  -10 \mathrm{~m} / \mathrm{s}^{2}  B)  10 \mathrm{~m} / \mathrm{s}^{2}  C)  -22 \mathrm{~m} / \mathrm{s}^{2}  D)  22 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 10 m/s2-10 \mathrm{~m} / \mathrm{s}^{2}
B) 10 m/s210 \mathrm{~m} / \mathrm{s}^{2}
C) 22 m/s2-22 \mathrm{~m} / \mathrm{s}^{2}
D) 22 m/s222 \mathrm{~m} / \mathrm{s}^{2}
Question
figure shows the speedometer readings as a car comes to a stop. Solve graphically for the acceleration axa_{x} at t=7.0 s\mathrm{t}=7.0 \mathrm{~s} .
 <strong>figure shows the speedometer readings as a car comes to a stop. Solve graphically for the acceleration  a_{x}  at  \mathrm{t}=7.0 \mathrm{~s} .  </strong> A)  2.0 \mathrm{~m} / \mathrm{s} 2  B)  -2.0 \mathrm{~m} / \mathrm{s}^{2}  C)  2.5 \mathrm{~m} / \mathrm{s}^{2}  D)  -2.5 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s} 2
B) 2.0 m/s2-2.0 \mathrm{~m} / \mathrm{s}^{2}
C) 2.5 m/s22.5 \mathrm{~m} / \mathrm{s}^{2}
D) 2.5 m/s2-2.5 \mathrm{~m} / \mathrm{s}^{2}
Question
figure shows the graph of vx\mathrm{v}_{\mathrm{x}} versus time for an object moving along the x\mathrm{x} -axis. What is the acceleration axa_{x} at t=7.0 s\mathrm{t}=7.0 \mathrm{~s} ?
 <strong>figure shows the graph of  \mathrm{v}_{\mathrm{x}}  versus time for an object moving along the  \mathrm{x} -axis. What is the acceleration  a_{x}  at  \mathrm{t}=7.0 \mathrm{~s}  ?  </strong> A)  0.4 \mathrm{~m} / \mathrm{s}^{2}  B)  0.5 \mathrm{~m} / \mathrm{s}^{2}  C)  4.0 \mathrm{~m} / \mathrm{s}^{2}  D)  5.0 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 0.4 m/s20.4 \mathrm{~m} / \mathrm{s}^{2}
B) 0.5 m/s20.5 \mathrm{~m} / \mathrm{s}^{2}
C) 4.0 m/s24.0 \mathrm{~m} / \mathrm{s}^{2}
D) 5.0 m/s25.0 \mathrm{~m} / \mathrm{s}^{2}
Question
object starts from rest with an acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the +x+x -direction for 3.0 seconds. It then reduces its acceleration to 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2} for 5.0 additional seconds. The total distance covered is about

A) 52 m52 \mathrm{~m} .
B) 11 m11 \mathrm{~m} .
C) 9.0 m9.0 \mathrm{~m} .
D) 7.6 m7.6 \mathrm{~m} .
E) 38 m38 \mathrm{~m} .
Question
4.0 kg4.0 \mathrm{~kg} mass has a velocity of 12 m/s12 \mathrm{~m} / \mathrm{s} to the WEST. The mass experiences a constant acceleration of 2.0 m/s2\mathrm{m} / \mathrm{s}^{2} to the WEST for 3.0sec3.0 \mathrm{sec} . What is the velocity of the mass at the end of the 3.0sec3.0 \mathrm{sec} interval?

A) 18 m/s18 \mathrm{~m} / \mathrm{s} to the EAST
B) 0.0 m/s0.0 \mathrm{~m} / \mathrm{s}
C) 18 m/s18 \mathrm{~m} / \mathrm{s} to the WEST
D) 6.0 m/s6.0 \mathrm{~m} / \mathrm{s} to the EAST
E) 6.0 m/s6.0 \mathrm{~m} / \mathrm{s} to the WEST
Question
4.0 kg4.0 \mathrm{~kg} mass has a velocity of 10 m/s10 \mathrm{~m} / \mathrm{s} to the EAST. The mass undergoes a constant acceleration of 4.0 m/s24.0 \mathrm{~m} / \mathrm{s} 2 to the WEST for 3.0sec3.0 \mathrm{sec} . What is the velocity of the mass at the end of the 3.0sec3.0 \mathrm{sec} interval?

A) 2.0 m/s2.0 \mathrm{~m} / \mathrm{s} to the EAST
B) 2.0 m/s2.0 \mathrm{~m} / \mathrm{s} to the WEST
C) 22 m/s22 \mathrm{~m} / \mathrm{s} to the EAST
D) 0.0 m/s0.0 \mathrm{~m} / \mathrm{s}
E) 22 m/s22 \mathrm{~m} / \mathrm{s} to the WEST
Question
car traveling at 3.0 m/s3.0 \mathrm{~m} / \mathrm{s} has a constant acceleration of 4.0 m/s24.0 \mathrm{~m} / \mathrm{s}^{2} in the same direction as the velocity. After 2.0 seconds, the speed is

A) 5.0 m/s5.0 \mathrm{~m} / \mathrm{s} .
B) 11 m/s11 \mathrm{~m} / \mathrm{s} .
C) 7.0 m/s7.0 \mathrm{~m} / \mathrm{s} .
D) 13 m/s13 \mathrm{~m} / \mathrm{s} .
E) 9.0 m/s9.0 \mathrm{~m} / \mathrm{s} .
Question
car traveling at 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} has a constant acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the same direction as the velocity. After 3.0 seconds, the magnitude of the average velocity during the acceleration is

A) 5.0 m/s5.0 \mathrm{~m} / \mathrm{s} .
B) 9.0 m/s9.0 \mathrm{~m} / \mathrm{s} .
C) 7.0 m/s7.0 \mathrm{~m} / \mathrm{s} .
D) 11 m/s11 \mathrm{~m} / \mathrm{s} .
E) 13.
Question
car traveling at 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} has a constant acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the same direction as the velocity. After 3.0 seconds, the distance traveled is

A) 21 m21 \mathrm{~m} .
B) 13 m13 \mathrm{~m} .
C) 10 m10 \mathrm{~m} .
D) 17 m17 \mathrm{~m} .
E) 9 m9 \mathrm{~m} .
Question
runner starts from rest and with an acceleration of 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2} travels a distance of 10 meters. The time it takes the runner to cover the distance is

A) 4.5 s4.5 \mathrm{~s} .
B) 5.7 s5.7 \mathrm{~s} .
C) 6.3 s6.3 \mathrm{~s} .
D) 3.8 s3.8 \mathrm{~s} .
E) 5.0 s5.0 \mathrm{~s} .
Question
runner starts from rest and with an acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} travels a distance of 12 meters. The magnitude of the velocity of the runner at the end of the distance is

A) 7.5 m/s7.5 \mathrm{~m} / \mathrm{s} .
B) 3.4 m/s3.4 \mathrm{~m} / \mathrm{s} .
C) 5.7 m/s5.7 \mathrm{~m} / \mathrm{s} .
D) 6.9 m/s6.9 \mathrm{~m} / \mathrm{s} .
E) 8.1 m/s8.1 \mathrm{~m} / \mathrm{s} .
Question
object starts with an initial velocity of magnitude 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} and accelerates at 4.0 m/s24.0 \mathrm{~m} / \mathrm{s} 2 in the same direction as the velocity for 6.0 seconds. It then accelerates at 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the opposite direction, until its velocity is the same as the initial value. What is the total distance covered? (Hint: make a graph of velocity versus time.)

A) 67 m67 \mathrm{~m}
B) 216 m216 \mathrm{~m}
C) 192 m192 \mathrm{~m}
D) 96 m96 \mathrm{~m}
E) 288 m288 \mathrm{~m}
Question
drive your car 5.0 km5.0 \mathrm{~km} due east at 35 km/hr35 \mathrm{~km} / \mathrm{hr} and suddenly realize that you forgot your wallet. So, you return home, driving west at 40 km/hr40 \mathrm{~km} / \mathrm{hr} , and upon arrival you spend 10 minutes looking for it. Finally, you get back on the road and drive a total of 57.0 km57.0 \mathrm{~km} due east. If your average velocity was 40 km/hr40 \mathrm{~km} / \mathrm{hr} for the whole journey, what was your average speed during the last leg?

A) 45 km/hr45 \mathrm{~km} / \mathrm{hr}
B) 40 km/hr40 \mathrm{~km} / \mathrm{hr}
C) 49 km/hr49 \mathrm{~km} / \mathrm{hr}
D) 58 km/hr58 \mathrm{~km} / \mathrm{hr}
Question
figure shows the graph of vxv_{x} versus time for an object moving along the xx -axis. Solve graphically for the distance traveled between t=5.0 st=5.0 \mathrm{~s} and t=9.0 s\mathrm{t}=9.0 \mathrm{~s} .
 <strong>figure shows the graph of  v_{x}  versus time for an object moving along the  x -axis. Solve graphically for the distance traveled between  t=5.0 \mathrm{~s}  and  \mathrm{t}=9.0 \mathrm{~s} .  </strong> A)  120 \mathrm{~m}  B)  130 \mathrm{~m}  C)  110 \mathrm{~m}  D)  100 \mathrm{~m}  <div style=padding-top: 35px>

A) 120 m120 \mathrm{~m}
B) 130 m130 \mathrm{~m}
C) 110 m110 \mathrm{~m}
D) 100 m100 \mathrm{~m}
Question
figure shows the graph of vx\mathrm{v}_{\mathrm{x}} versus time for an object moving along the x\mathrm{x} -axis. Solve graphically for the average acceleration between t=5.0 s\mathrm{t}=5.0 \mathrm{~s} and t=9.0 s\mathrm{t}=9.0 \mathrm{~s} .
 <strong>figure shows the graph of  \mathrm{v}_{\mathrm{x}}  versus time for an object moving along the  \mathrm{x} -axis. Solve graphically for the average acceleration between  \mathrm{t}=5.0 \mathrm{~s}  and  \mathrm{t}=9.0 \mathrm{~s} .  </strong> A)  4.0 \mathrm{~m} / \mathrm{s}^{2}  B)  5.0 \mathrm{~m} / \mathrm{s}^{2}  C)  0.4 \mathrm{~m} / \mathrm{s}^{2}  D)  0.5 \mathrm{~m} / \mathrm{s}^{2}  <div style=padding-top: 35px>

A) 4.0 m/s24.0 \mathrm{~m} / \mathrm{s}^{2}
B) 5.0 m/s25.0 \mathrm{~m} / \mathrm{s}^{2}
C) 0.4 m/s20.4 \mathrm{~m} / \mathrm{s}^{2}
D) 0.5 m/s20.5 \mathrm{~m} / \mathrm{s}^{2}
Question
ball is thrown upward with a velocity of 19.6 m/s19.6 \mathrm{~m} / \mathrm{s} . What is its velocity after 3.00 s3.00 \mathrm{~s} ?

A) 9.80 m/s9.80 \mathrm{~m} / \mathrm{s} down
B) 19.6 down
C) zero
D) 9.80 m/s9.80 \mathrm{~m} / \mathrm{s} up
Question
ball is thrown straight up with an initial speed of 30 m/s30 \mathrm{~m} / \mathrm{s} . What is its speed after 4.2 s4.2 \mathrm{~s} ?

A) 42 m/s42 \mathrm{~m} / \mathrm{s}
B) 72 m/s72 \mathrm{~m} / \mathrm{s}
C) 30 m/s30 \mathrm{~m} / \mathrm{s}
D) 11 m/s11 \mathrm{~m} / \mathrm{s}
Question
ball is thrown straight up with a speed of 30.0 m/s30.0 \mathrm{~m} / \mathrm{s} . What is the maximum height reached by the ball?

A) 132 m132 \mathrm{~m}
B) 21.3 m21.3 \mathrm{~m}
C) 92.0 m92.0 \mathrm{~m}
D) 45.9 m45.9 \mathrm{~m}
Question
sprinter runs 100.0 m100.0 \mathrm{~m} in 12.2 seconds. If he travels at constant acceleration for the first 50.0 m50.0 \mathrm{~m} and then at constant velocity for the final 50.0 m50.0 \mathrm{~m} , what was his peak speed?

A) 8.20 m/s8.20 \mathrm{~m} / \mathrm{s}
B) 17.5 m/s17.5 \mathrm{~m} / \mathrm{s}
C) 4.10 m/s4.10 \mathrm{~m} / \mathrm{s}
D) 12.3 m/s12.3 \mathrm{~m} / \mathrm{s}
Question
sprinter runs 100.0 m100.0 \mathrm{~m} in 9.87 seconds. If he travels at constant acceleration for the first 75.0 m75.0 \mathrm{~m} and then at constant velocity for the final 25.0 m25.0 \mathrm{~m} , what was his acceleration during the first 75.0 m75.0 \mathrm{~m} ?

A) 2.05 m/s22.05 \mathrm{~m} / \mathrm{s}^{2}
B) 1.58 m/s21.58 \mathrm{~m} / \mathrm{s}^{2}
C) 2.74 m/s22.74 \mathrm{~m} / \mathrm{s}^{2}
D) 2.10 m/s22.10 \mathrm{~m} / \mathrm{s}^{2}
Question
electron from a heated filament in an electron gun travels with constant acceleration to the tip of the gun, where it is emitted. If the final speed of the electron is 1.5×105 m/s1.5 \times 105 \mathrm{~m} / \mathrm{s} , the length of the gun from filament to tip is 1.25 cm1.25 \mathrm{~cm} , and the electron started from rest, what was the acceleration of the electron?

A) 9.0×109 m/s29.0 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2}
B) 1.8×1012 m/s21.8 \times 1012 \mathrm{~m} / \mathrm{s}^{2}
C) 9.0×1011 m/s29.0 \times 1011 \mathrm{~m} / \mathrm{s}^{2}
D) 6.0×106 m/s26.0 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}
E) 9.0×1010 m/s29.0 \times 1010 \mathrm{~m} / \mathrm{s}^{2}
F) 1.8×109 m/s21.8 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2}
Question
ball is dropped at time t=0.0 s\mathrm{t}=0.0 \mathrm{~s} . At t=2.0 s\mathrm{t}=2.0 \mathrm{~s} , a second ball is thrown downward with speed v\mathrm{v} . What is v\mathrm{v} if at t=4.0 s\mathrm{t}=4.0 \mathrm{~s} , the two balls are at the same vertical position?

A) 25 m/s25 \mathrm{~m} / \mathrm{s}
B) 29 m/s29 \mathrm{~m} / \mathrm{s}
C) 49 m/s49 \mathrm{~m} / \mathrm{s}
D) 15 m/s15 \mathrm{~m} / \mathrm{s}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/27
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 2: Motion Along a Line
1
figure is a graph of vx(t)\mathrm{v}_{\mathrm{x}}(\mathrm{t}) for a car. Solve graphically for the distance traveled from t=10 s\mathrm{t}=10 \mathrm{~s} to t=15 s\mathrm{t}=15 \mathrm{~s} .
 <strong>figure is a graph of  \mathrm{v}_{\mathrm{x}}(\mathrm{t})  for a car. Solve graphically for the distance traveled from  \mathrm{t}=10 \mathrm{~s}  to  \mathrm{t}=15 \mathrm{~s} .  </strong> A)  75 \mathrm{~m}  B)  69 \mathrm{~m}  C)  67 \mathrm{~m}  D)  70 \mathrm{~m}

A) 75 m75 \mathrm{~m}
B) 69 m69 \mathrm{~m}
C) 67 m67 \mathrm{~m}
D) 70 m70 \mathrm{~m}
69 m69 \mathrm{~m}
2
figure shows the graph of vxv_{x} versus time for an object moving along the xx -axis. Solve graphically for the distance traveled from t=9.0 s\mathrm{t}=9.0 \mathrm{~s} to t=13.0 s\mathrm{t}=13.0 \mathrm{~s} .
 <strong>figure shows the graph of  v_{x}  versus time for an object moving along the  x -axis. Solve graphically for the distance traveled from  \mathrm{t}=9.0 \mathrm{~s}  to  \mathrm{t}=13.0 \mathrm{~s} .  </strong> A)  84 \mathrm{~m}  B)  80 \mathrm{~m}  C)  60 \mathrm{~m}  D)  76 \mathrm{~m}

A) 84 m84 \mathrm{~m}
B) 80 m80 \mathrm{~m}
C) 60 m60 \mathrm{~m}
D) 76 m76 \mathrm{~m}
80 m80 \mathrm{~m}
3
car travels a distance of 100 km100 \mathrm{~km} in 2.00 hours. It then travels an additional distance of 60.0 km60.0 \mathrm{~km} in 1.00 hour. The average speed of the car for the entire trip is

A) 50.0 km/hr50.0 \mathrm{~km} / \mathrm{hr} .
B) 46.7 km/hr46.7 \mathrm{~km} / \mathrm{hr} .
C) 80.0 km/hr80.0 \mathrm{~km} / \mathrm{hr} .
D) 60.0 km/hr60.0 \mathrm{~km} / \mathrm{hr} .
E) 53.3 km/hr53.3 \mathrm{~km} / \mathrm{hr} .
53.3 km/hr53.3 \mathrm{~km} / \mathrm{hr} .
4
car travels at 50.0 km/hr50.0 \mathrm{~km} / \mathrm{hr} for 2.00 hours. It then travels an additional distance of 40.0 km40.0 \mathrm{~km} in 1.00 hour. The average speed of the car for the entire trip is

A) 30.0 km/hr30.0 \mathrm{~km} / \mathrm{hr} .
B) 53.3 km/hr53.3 \mathrm{~km} / \mathrm{hr} .
C) 57.1 km/hr57.1 \mathrm{~km} / \mathrm{hr} .
D) 61.0 km/hr61.0 \mathrm{~km} / \mathrm{hr} .
E) 46.7 km/hr46.7 \mathrm{~km} / \mathrm{hr} .
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
5
car travels a distance of 140 km140 \mathrm{~km} at 70.0 km/hr70.0 \mathrm{~km} / \mathrm{hr} . It then travels an additional distance of 60.0 km60.0 \mathrm{~km} at 40.0 km/hr\mathrm{km} / \mathrm{hr} . The average speed is

A) 57.1 km/hr57.1 \mathrm{~km} / \mathrm{hr} .
B) 46.7 km/hr46.7 \mathrm{~km} / \mathrm{hr} .
C) 45.0 km/hr45.0 \mathrm{~km} / \mathrm{hr} .
D) 61.0 km/hr61.0 \mathrm{~km} / \mathrm{hr} .
E) 53.3 km/hr53.3 \mathrm{~km} / \mathrm{hr} .
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
6
graph shows vx\mathrm{v}_{\mathrm{x}} versus t\mathrm{t} for an object moving along straight line. What is the acceleration axa_{x} at t=11 s\mathrm{t}=11 \mathrm{~s} ?
 <strong>graph shows  \mathrm{v}_{\mathrm{x}}  versus  \mathrm{t}  for an object moving along straight line. What is the acceleration  a_{x}  at  \mathrm{t}=11 \mathrm{~s}  ?  </strong> A)  -10 \mathrm{~m} / \mathrm{s}^{2}  B)  10 \mathrm{~m} / \mathrm{s}^{2}  C)  -22 \mathrm{~m} / \mathrm{s}^{2}  D)  22 \mathrm{~m} / \mathrm{s}^{2}

A) 10 m/s2-10 \mathrm{~m} / \mathrm{s}^{2}
B) 10 m/s210 \mathrm{~m} / \mathrm{s}^{2}
C) 22 m/s2-22 \mathrm{~m} / \mathrm{s}^{2}
D) 22 m/s222 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
7
figure shows the speedometer readings as a car comes to a stop. Solve graphically for the acceleration axa_{x} at t=7.0 s\mathrm{t}=7.0 \mathrm{~s} .
 <strong>figure shows the speedometer readings as a car comes to a stop. Solve graphically for the acceleration  a_{x}  at  \mathrm{t}=7.0 \mathrm{~s} .  </strong> A)  2.0 \mathrm{~m} / \mathrm{s} 2  B)  -2.0 \mathrm{~m} / \mathrm{s}^{2}  C)  2.5 \mathrm{~m} / \mathrm{s}^{2}  D)  -2.5 \mathrm{~m} / \mathrm{s}^{2}

A) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s} 2
B) 2.0 m/s2-2.0 \mathrm{~m} / \mathrm{s}^{2}
C) 2.5 m/s22.5 \mathrm{~m} / \mathrm{s}^{2}
D) 2.5 m/s2-2.5 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
8
figure shows the graph of vx\mathrm{v}_{\mathrm{x}} versus time for an object moving along the x\mathrm{x} -axis. What is the acceleration axa_{x} at t=7.0 s\mathrm{t}=7.0 \mathrm{~s} ?
 <strong>figure shows the graph of  \mathrm{v}_{\mathrm{x}}  versus time for an object moving along the  \mathrm{x} -axis. What is the acceleration  a_{x}  at  \mathrm{t}=7.0 \mathrm{~s}  ?  </strong> A)  0.4 \mathrm{~m} / \mathrm{s}^{2}  B)  0.5 \mathrm{~m} / \mathrm{s}^{2}  C)  4.0 \mathrm{~m} / \mathrm{s}^{2}  D)  5.0 \mathrm{~m} / \mathrm{s}^{2}

A) 0.4 m/s20.4 \mathrm{~m} / \mathrm{s}^{2}
B) 0.5 m/s20.5 \mathrm{~m} / \mathrm{s}^{2}
C) 4.0 m/s24.0 \mathrm{~m} / \mathrm{s}^{2}
D) 5.0 m/s25.0 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
9
object starts from rest with an acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the +x+x -direction for 3.0 seconds. It then reduces its acceleration to 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2} for 5.0 additional seconds. The total distance covered is about

A) 52 m52 \mathrm{~m} .
B) 11 m11 \mathrm{~m} .
C) 9.0 m9.0 \mathrm{~m} .
D) 7.6 m7.6 \mathrm{~m} .
E) 38 m38 \mathrm{~m} .
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
10
4.0 kg4.0 \mathrm{~kg} mass has a velocity of 12 m/s12 \mathrm{~m} / \mathrm{s} to the WEST. The mass experiences a constant acceleration of 2.0 m/s2\mathrm{m} / \mathrm{s}^{2} to the WEST for 3.0sec3.0 \mathrm{sec} . What is the velocity of the mass at the end of the 3.0sec3.0 \mathrm{sec} interval?

A) 18 m/s18 \mathrm{~m} / \mathrm{s} to the EAST
B) 0.0 m/s0.0 \mathrm{~m} / \mathrm{s}
C) 18 m/s18 \mathrm{~m} / \mathrm{s} to the WEST
D) 6.0 m/s6.0 \mathrm{~m} / \mathrm{s} to the EAST
E) 6.0 m/s6.0 \mathrm{~m} / \mathrm{s} to the WEST
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
11
4.0 kg4.0 \mathrm{~kg} mass has a velocity of 10 m/s10 \mathrm{~m} / \mathrm{s} to the EAST. The mass undergoes a constant acceleration of 4.0 m/s24.0 \mathrm{~m} / \mathrm{s} 2 to the WEST for 3.0sec3.0 \mathrm{sec} . What is the velocity of the mass at the end of the 3.0sec3.0 \mathrm{sec} interval?

A) 2.0 m/s2.0 \mathrm{~m} / \mathrm{s} to the EAST
B) 2.0 m/s2.0 \mathrm{~m} / \mathrm{s} to the WEST
C) 22 m/s22 \mathrm{~m} / \mathrm{s} to the EAST
D) 0.0 m/s0.0 \mathrm{~m} / \mathrm{s}
E) 22 m/s22 \mathrm{~m} / \mathrm{s} to the WEST
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
12
car traveling at 3.0 m/s3.0 \mathrm{~m} / \mathrm{s} has a constant acceleration of 4.0 m/s24.0 \mathrm{~m} / \mathrm{s}^{2} in the same direction as the velocity. After 2.0 seconds, the speed is

A) 5.0 m/s5.0 \mathrm{~m} / \mathrm{s} .
B) 11 m/s11 \mathrm{~m} / \mathrm{s} .
C) 7.0 m/s7.0 \mathrm{~m} / \mathrm{s} .
D) 13 m/s13 \mathrm{~m} / \mathrm{s} .
E) 9.0 m/s9.0 \mathrm{~m} / \mathrm{s} .
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
13
car traveling at 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} has a constant acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the same direction as the velocity. After 3.0 seconds, the magnitude of the average velocity during the acceleration is

A) 5.0 m/s5.0 \mathrm{~m} / \mathrm{s} .
B) 9.0 m/s9.0 \mathrm{~m} / \mathrm{s} .
C) 7.0 m/s7.0 \mathrm{~m} / \mathrm{s} .
D) 11 m/s11 \mathrm{~m} / \mathrm{s} .
E) 13.
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
14
car traveling at 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} has a constant acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the same direction as the velocity. After 3.0 seconds, the distance traveled is

A) 21 m21 \mathrm{~m} .
B) 13 m13 \mathrm{~m} .
C) 10 m10 \mathrm{~m} .
D) 17 m17 \mathrm{~m} .
E) 9 m9 \mathrm{~m} .
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
15
runner starts from rest and with an acceleration of 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2} travels a distance of 10 meters. The time it takes the runner to cover the distance is

A) 4.5 s4.5 \mathrm{~s} .
B) 5.7 s5.7 \mathrm{~s} .
C) 6.3 s6.3 \mathrm{~s} .
D) 3.8 s3.8 \mathrm{~s} .
E) 5.0 s5.0 \mathrm{~s} .
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
16
runner starts from rest and with an acceleration of 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} travels a distance of 12 meters. The magnitude of the velocity of the runner at the end of the distance is

A) 7.5 m/s7.5 \mathrm{~m} / \mathrm{s} .
B) 3.4 m/s3.4 \mathrm{~m} / \mathrm{s} .
C) 5.7 m/s5.7 \mathrm{~m} / \mathrm{s} .
D) 6.9 m/s6.9 \mathrm{~m} / \mathrm{s} .
E) 8.1 m/s8.1 \mathrm{~m} / \mathrm{s} .
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
17
object starts with an initial velocity of magnitude 4.0 m/s4.0 \mathrm{~m} / \mathrm{s} and accelerates at 4.0 m/s24.0 \mathrm{~m} / \mathrm{s} 2 in the same direction as the velocity for 6.0 seconds. It then accelerates at 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} in the opposite direction, until its velocity is the same as the initial value. What is the total distance covered? (Hint: make a graph of velocity versus time.)

A) 67 m67 \mathrm{~m}
B) 216 m216 \mathrm{~m}
C) 192 m192 \mathrm{~m}
D) 96 m96 \mathrm{~m}
E) 288 m288 \mathrm{~m}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
18
drive your car 5.0 km5.0 \mathrm{~km} due east at 35 km/hr35 \mathrm{~km} / \mathrm{hr} and suddenly realize that you forgot your wallet. So, you return home, driving west at 40 km/hr40 \mathrm{~km} / \mathrm{hr} , and upon arrival you spend 10 minutes looking for it. Finally, you get back on the road and drive a total of 57.0 km57.0 \mathrm{~km} due east. If your average velocity was 40 km/hr40 \mathrm{~km} / \mathrm{hr} for the whole journey, what was your average speed during the last leg?

A) 45 km/hr45 \mathrm{~km} / \mathrm{hr}
B) 40 km/hr40 \mathrm{~km} / \mathrm{hr}
C) 49 km/hr49 \mathrm{~km} / \mathrm{hr}
D) 58 km/hr58 \mathrm{~km} / \mathrm{hr}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
19
figure shows the graph of vxv_{x} versus time for an object moving along the xx -axis. Solve graphically for the distance traveled between t=5.0 st=5.0 \mathrm{~s} and t=9.0 s\mathrm{t}=9.0 \mathrm{~s} .
 <strong>figure shows the graph of  v_{x}  versus time for an object moving along the  x -axis. Solve graphically for the distance traveled between  t=5.0 \mathrm{~s}  and  \mathrm{t}=9.0 \mathrm{~s} .  </strong> A)  120 \mathrm{~m}  B)  130 \mathrm{~m}  C)  110 \mathrm{~m}  D)  100 \mathrm{~m}

A) 120 m120 \mathrm{~m}
B) 130 m130 \mathrm{~m}
C) 110 m110 \mathrm{~m}
D) 100 m100 \mathrm{~m}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
20
figure shows the graph of vx\mathrm{v}_{\mathrm{x}} versus time for an object moving along the x\mathrm{x} -axis. Solve graphically for the average acceleration between t=5.0 s\mathrm{t}=5.0 \mathrm{~s} and t=9.0 s\mathrm{t}=9.0 \mathrm{~s} .
 <strong>figure shows the graph of  \mathrm{v}_{\mathrm{x}}  versus time for an object moving along the  \mathrm{x} -axis. Solve graphically for the average acceleration between  \mathrm{t}=5.0 \mathrm{~s}  and  \mathrm{t}=9.0 \mathrm{~s} .  </strong> A)  4.0 \mathrm{~m} / \mathrm{s}^{2}  B)  5.0 \mathrm{~m} / \mathrm{s}^{2}  C)  0.4 \mathrm{~m} / \mathrm{s}^{2}  D)  0.5 \mathrm{~m} / \mathrm{s}^{2}

A) 4.0 m/s24.0 \mathrm{~m} / \mathrm{s}^{2}
B) 5.0 m/s25.0 \mathrm{~m} / \mathrm{s}^{2}
C) 0.4 m/s20.4 \mathrm{~m} / \mathrm{s}^{2}
D) 0.5 m/s20.5 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
21
ball is thrown upward with a velocity of 19.6 m/s19.6 \mathrm{~m} / \mathrm{s} . What is its velocity after 3.00 s3.00 \mathrm{~s} ?

A) 9.80 m/s9.80 \mathrm{~m} / \mathrm{s} down
B) 19.6 down
C) zero
D) 9.80 m/s9.80 \mathrm{~m} / \mathrm{s} up
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
22
ball is thrown straight up with an initial speed of 30 m/s30 \mathrm{~m} / \mathrm{s} . What is its speed after 4.2 s4.2 \mathrm{~s} ?

A) 42 m/s42 \mathrm{~m} / \mathrm{s}
B) 72 m/s72 \mathrm{~m} / \mathrm{s}
C) 30 m/s30 \mathrm{~m} / \mathrm{s}
D) 11 m/s11 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
23
ball is thrown straight up with a speed of 30.0 m/s30.0 \mathrm{~m} / \mathrm{s} . What is the maximum height reached by the ball?

A) 132 m132 \mathrm{~m}
B) 21.3 m21.3 \mathrm{~m}
C) 92.0 m92.0 \mathrm{~m}
D) 45.9 m45.9 \mathrm{~m}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
24
sprinter runs 100.0 m100.0 \mathrm{~m} in 12.2 seconds. If he travels at constant acceleration for the first 50.0 m50.0 \mathrm{~m} and then at constant velocity for the final 50.0 m50.0 \mathrm{~m} , what was his peak speed?

A) 8.20 m/s8.20 \mathrm{~m} / \mathrm{s}
B) 17.5 m/s17.5 \mathrm{~m} / \mathrm{s}
C) 4.10 m/s4.10 \mathrm{~m} / \mathrm{s}
D) 12.3 m/s12.3 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
25
sprinter runs 100.0 m100.0 \mathrm{~m} in 9.87 seconds. If he travels at constant acceleration for the first 75.0 m75.0 \mathrm{~m} and then at constant velocity for the final 25.0 m25.0 \mathrm{~m} , what was his acceleration during the first 75.0 m75.0 \mathrm{~m} ?

A) 2.05 m/s22.05 \mathrm{~m} / \mathrm{s}^{2}
B) 1.58 m/s21.58 \mathrm{~m} / \mathrm{s}^{2}
C) 2.74 m/s22.74 \mathrm{~m} / \mathrm{s}^{2}
D) 2.10 m/s22.10 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
26
electron from a heated filament in an electron gun travels with constant acceleration to the tip of the gun, where it is emitted. If the final speed of the electron is 1.5×105 m/s1.5 \times 105 \mathrm{~m} / \mathrm{s} , the length of the gun from filament to tip is 1.25 cm1.25 \mathrm{~cm} , and the electron started from rest, what was the acceleration of the electron?

A) 9.0×109 m/s29.0 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2}
B) 1.8×1012 m/s21.8 \times 1012 \mathrm{~m} / \mathrm{s}^{2}
C) 9.0×1011 m/s29.0 \times 1011 \mathrm{~m} / \mathrm{s}^{2}
D) 6.0×106 m/s26.0 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}
E) 9.0×1010 m/s29.0 \times 1010 \mathrm{~m} / \mathrm{s}^{2}
F) 1.8×109 m/s21.8 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
27
ball is dropped at time t=0.0 s\mathrm{t}=0.0 \mathrm{~s} . At t=2.0 s\mathrm{t}=2.0 \mathrm{~s} , a second ball is thrown downward with speed v\mathrm{v} . What is v\mathrm{v} if at t=4.0 s\mathrm{t}=4.0 \mathrm{~s} , the two balls are at the same vertical position?

A) 25 m/s25 \mathrm{~m} / \mathrm{s}
B) 29 m/s29 \mathrm{~m} / \mathrm{s}
C) 49 m/s49 \mathrm{~m} / \mathrm{s}
D) 15 m/s15 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 27 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 27 flashcards in this deck.