Deck 5: Circular Motion

Full screen (f)
exit full mode
Question
An object is moving in a circular path with a radius of 5.00 m5.00 \mathrm{~m} . If the object moves through an angle of 270 degrees, then the tangential distance traveled by the object is

A) 23.6 m23.6 \mathrm{~m} .
B) 4.71 m4.71 \mathrm{~m} .
C) 15.2 m15.2 \mathrm{~m} .
D) 40.2 m40.2 \mathrm{~m} .
Use Space or
up arrow
down arrow
to flip the card.
Question
An object is moving in a circular path of radius 4.00 m4.00 \mathrm{~m} . If the object moves through an angle of 30.0 degrees, then the tangential distance traveled by the object is

A) 1.75 m1.75 \mathrm{~m}
B) 2.09 m2.09 \mathrm{~m} .
C) 2.84 m2.84 \mathrm{~m} .
D) 3.66 m3.66 \mathrm{~m} .
E) 3.21 m3.21 \mathrm{~m} .
Question
An object is moving in a circular path of radius 4.00 m4.00 \mathrm{~m} . If the object moves through an angle of 1.2 radians, then the tangential distance traveled by the object is

A) 4.8 m4.8 \mathrm{~m} .
B) 3.8 m3.8 \mathrm{~m} .
C) 2.8 m2.8 \mathrm{~m} .
D) 4.3 m4.3 \mathrm{~m} .
E) 3.2 m3.2 \mathrm{~m} .
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant angular speed of 20.0 radians per second, then the period of the rotational motion is

A) 0.421 s0.421 \mathrm{~s} .
B) 0.143 s0.143 \mathrm{~s} .
C) 0.224 s0.224 \mathrm{~s} .
D) 0.314 s0.314 \mathrm{~s} .
E) 0.558 s0.558 \mathrm{~s} .
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant angular speed of 20.0 radians per second, then the frequency of the rotational motion is

A) 2.14 Hz2.14 \mathrm{~Hz} .
B) 4.50 Hz4.50 \mathrm{~Hz} .
C) 3.83 Hz3.83 \mathrm{~Hz}
D) 4.89 Hz4.89 \mathrm{~Hz} .
E) 3.18 Hz3.18 \mathrm{~Hz}
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 3.18 Hz3.18 \mathrm{~Hz} , then the period of the rotational motion is

A) 0.441 s0.441 \mathrm{~s} .
B) 0.582 s0.582 \mathrm{~s} .
C) 0.698 s0.698 \mathrm{~s} .
D) 0.750 s0.750 \mathrm{~s} .
E) 0.314 s0.314 \mathrm{~s} .
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CDC D is rotating with a constant period of 0.314 seconds, then the frequency of the rotational motion is

A) 3.18 Hz3.18 \mathrm{~Hz} .
B) 2.15 Hz2.15 \mathrm{~Hz} .
C) 2.83 Hz2.83 \mathrm{~Hz} .
D) 3.67 Hz3.67 \mathrm{~Hz} .
E) 4.00 Hz4.00 \mathrm{~Hz} .
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 4.00 rotations per second, then the period of the rotational motion is

A) 0.750 s0.750 \mathrm{~s} .
B) 1.25 s1.25 \mathrm{~s} .
C) 0.500 s0.500 \mathrm{~s} .
D) 0.250 s0.250 \mathrm{~s} .
E) 1.00 s1.00 \mathrm{~s}
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 4.00 rotations per second, then the linear speed of a point on the circumference is

A) 1.31 m/s1.31 \mathrm{~m} / \mathrm{s} .
B) 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} .
C) 1.51 m/s1.51 \mathrm{~m} / \mathrm{s} .
D) 1.25 m/s1.25 \mathrm{~m} / \mathrm{s} .
E) 1.82 m/s1.82 \mathrm{~m} / \mathrm{s}
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 6.00 rotations per second, then the angular speed is

A) 26.9rad/s26.9 \mathrm{rad} / \mathrm{s} .
B) 21.5rad/s21.5 \mathrm{rad} / \mathrm{s} .
C) 37.7rad/s37.7 \mathrm{rad} / \mathrm{s} .
D) 33.3rad/s33.3 \mathrm{rad} / \mathrm{s} .
E) 29.6rad/s29.6 \mathrm{rad} / \mathrm{s} .
Question
A 4.00 kg4.00 \mathrm{~kg} mass is moving in a circular path of radius 2.50 m2.50 \mathrm{~m} with a constant angular speed of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The magnitude of the radial force on the mass is

A) 250 N250 \mathrm{~N} .
B) 107 N107 \mathrm{~N} .
C) 94.0 N94.0 \mathrm{~N} .
D) 153 N153 \mathrm{~N} .
E) 185 N185 \mathrm{~N} .
Question
A 4.00 kg4.00 \mathrm{~kg} mass is moving in a circular path of radius 3.20 m3.20 \mathrm{~m} with a constant linear speed of 6.20 m/s6.20 \mathrm{~m} / \mathrm{s} . The radial force on the mass is

A) 59.0 N59.0 \mathrm{~N} toward the center.
B) 48.1 N48.1 \mathrm{~N} toward the center.
C) 50.5 N50.5 \mathrm{~N} away from the center.
D) 62.3 N62.3 \mathrm{~N} away from the center.
E) 40.2 N40.2 \mathrm{~N} away from the center.
Question
A 2.60 kg2.60 \mathrm{~kg} mass is moving in a circular path with a constant angular speed of 5.50rad/sec5.50 \mathrm{rad} / \mathrm{sec} and with a linear speed of 3.50 m/s3.50 \mathrm{~m} / \mathrm{s} . The magnitude of the radial force on the mass is

A) 50.1 N50.1 \mathrm{~N} .
B) 66.7 N66.7 \mathrm{~N} .
C) 30.4 N30.4 \mathrm{~N} .
D) 40.5 N40.5 \mathrm{~N} .
E) 60.5 N60.5 \mathrm{~N} .
Question
An airplane is traveling at 150 m/s150 \mathrm{~m} / \mathrm{s} in level flight. In order to make a change in direction, the airplane travels in a horizontal curved path. To fly in the curved path, the pilot banks the airplane at an angle such that the lift has a horizontal component that provides the horizontal radial acceleration to move in a horizontal circular path. If the airplane is banked at an angle of 12.0 degrees, then the radius of curvature of the curved path of the airplane is

A) 8.74 km8.74 \mathrm{~km} .
B) 6.90 km6.90 \mathrm{~km}
C) 7.33 km7.33 \mathrm{~km} .
D) 10.8 km10.8 \mathrm{~km}
E) 8.00 km8.00 \mathrm{~km} .
Question
An airplane is traveling at 250 m/s250 \mathrm{~m} / \mathrm{s} in level flight. In order to make a change in direction, the airplane travels in a horizontal curved path. To fly in the curved path, the pilot banks the airplane at an angle such that the lift has a horizontal component that provides the horizontal radial acceleration to move in a horizontal circular path. If the airplane is banked at an angle of 15.0 degrees, then the radius of curvature of the curved path of the airplane is

A) 27.5 km27.5 \mathrm{~km} .
B) 23.8 km23.8 \mathrm{~km} .
C) 30.1 km30.1 \mathrm{~km}
D) 20.1 km20.1 \mathrm{~km}
E) 25.0 km25.0 \mathrm{~km} .
Question
A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km800 \mathrm{~km} . The speed of the satellite is (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11}\right. Nm2/kg2)\left.\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 5,950 m/s5,950 \mathrm{~m} / \mathrm{s}
B) 7,460 m/s7,460 \mathrm{~m} / \mathrm{s} .
C) 6,430 m/s6,430 \mathrm{~m} / \mathrm{s} .
D) 5,350 m/s5,350 \mathrm{~m} / \mathrm{s} .
E) 6,830 m/s6,830 \mathrm{~m} / \mathrm{s} .
Question
A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km800 \mathrm{~km} . The angular speed of the satellite as it orbits the Earth is (ME=5.98×1024 kg,RE=6.37\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37\right. ×106 m,G=6.67×1011 Nm2/kg2\times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2} )

A) 1.04×103rad/s1.04 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
B) 1.44×103rad/s1.44 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
C) 9.50×104rad/s9.50 \times 10^{-4} \mathrm{rad} / \mathrm{s} .
D) 2.20×103rad/s2.20 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
E) 1.90×103rad/s1.90 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
Question
A 5,000 kg5,000 \mathrm{~kg} satellite is orbiting the Earth in a geostationary orbit. The height of the satellite above the surface of the Earth is (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011 Nm2/kg2)\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 8.29×107 m8.29 \times 10^{7} \mathrm{~m} .
B) 2.95×107 m2.95 \times 10^{7} \mathrm{~m} .
C) 1.40×107 m1.40 \times 10^{7} \mathrm{~m}
D) 3.59×107 m3.59 \times 10^{7} \mathrm{~m} .
E) 6.35×107 m6.35 \times 10^{7} \mathrm{~m} .
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the linear speed of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 2.0 seconds from the start?

A) 0.18 m/s0.18 \mathrm{~m} / \mathrm{s}
B) 0.060 m/s0.060 \mathrm{~m} / \mathrm{s}
C) 0.080 m/s0.080 \mathrm{~m} / \mathrm{s}
D) 0.10 m/s0.10 \mathrm{~m} / \mathrm{s}
E) 0.14 m/s0.14 \mathrm{~m} / \mathrm{s}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 2.0 seconds from the start?

A) 0.21 m/s20.21 \mathrm{~m} / \mathrm{s}^{2}
B) 0.28 m/s20.28 \mathrm{~m} / \mathrm{s}^{2}
C) 0.30 m/s20.30 \mathrm{~m} / \mathrm{s}^{2}
D) 0.37 m/s20.37 \mathrm{~m} / \mathrm{s}^{2}
E) 0.16 m/s20.16 \mathrm{~m} / \mathrm{s}^{2}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15 seconds15 \mathrm{~seconds} and then slows to a stop in 12.0 second with a constant angular acceleration. What is the angular distance traveled by a point 4.0 cm4.0 \mathrm{~cm} from the center, at the time 2.0 seconds from the start?

A) 2.0rad2.0 \mathrm{rad}
B) 6.0rad6.0 \mathrm{rad}
C) 10.0rad10.0 \mathrm{rad}
D) 8.0rad8.0 \mathrm{rad}
E) 4.0rad4.0 \mathrm{rad}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 10.0 seconds from the start?

A) 0.6 m/s20.6 \mathrm{~m} / \mathrm{s}^{2}
B) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2}
C) 0.9 m/s20.9 \mathrm{~m} / \mathrm{s}^{2}
D) 1.8 m/s21.8 \mathrm{~m} / \mathrm{s}^{2}
E) 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds15.0 \mathrm{~seconds} and then slows to a stop in 12.0 second with a constant angular acceleration. What is the angular distance traveled by a point 4.00 cm4.00 \mathrm{~cm} from the center, at the time 10.0 seconds from the start?

A) 27.6rad27.6 \mathrm{rad}
B) 48.2rad48.2 \mathrm{rad}
C) 40.7rad40.7 \mathrm{rad}
D) 51.2rad51.2 \mathrm{rad}
E) 37.5rad37.5 \mathrm{rad}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the linear speed of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 10.0 seconds from the start?

A) 0.20 m/s0.20 \mathrm{~m} / \mathrm{s}
B) 0.40 m/s0.40 \mathrm{~m} / \mathrm{s}
C) 0.50 m/s0.50 \mathrm{~m} / \mathrm{s}
D) 0.30 m/s0.30 \mathrm{~m} / \mathrm{s}
E) 0.10 m/s0.10 \mathrm{~m} / \mathrm{s}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 25.0 seconds from the start?

A) 0.47 m/s20.47 \mathrm{~m} / \mathrm{s}^{2}
B) 0.34 m/s20.34 \mathrm{~m} / \mathrm{s}^{2}
C) 0.40 m/s20.40 \mathrm{~m} / \mathrm{s}^{2}
D) 0.24 m/s20.24 \mathrm{~m} / \mathrm{s}^{2}
E) 0.20 m/s20.20 \mathrm{~m} / \mathrm{s}^{2}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD\mathrm{CD} continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the angular distance traveled by a point 4.00 cm4.00 \mathrm{~cm} from the center, at the time 25.0 seconds from the start?

A) 205rad205 \mathrm{rad}
B) 237rad237 \mathrm{rad}
C) 193rad193 \mathrm{rad}
D) 274rad274 \mathrm{rad}
E) 107rad107 \mathrm{rad}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the linear speed of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 25.0 seconds from the start?

A) 0.00 m/s0.00 \mathrm{~m} / \mathrm{s}
B) 0.10 m/s0.10 \mathrm{~m} / \mathrm{s}
C) 0.017 m/s0.017 \mathrm{~m} / \mathrm{s}
D) 0.12 m/s0.12 \mathrm{~m} / \mathrm{s}
E) 0.083 m/s0.083 \mathrm{~m} / \mathrm{s}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD\mathrm{CD} continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 15.0 seconds from the start?

A) 1.8 m/s21.8 \mathrm{~m} / \mathrm{s}^{2}
B) 0.5 m/s20.5 \mathrm{~m} / \mathrm{s}^{2}
C) 2.6 m/s22.6 \mathrm{~m} / \mathrm{s}^{2}
D) 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2}
E) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the magnitude of the (total) acceleration of a point 4.00 cm4.00 \mathrm{~cm} from the center at the time 2.00 seconds from the start?

A) 0.100 m/s20.100 \mathrm{~m} / \mathrm{s}^{2}
B) 0.450 m/s20.450 \mathrm{~m} / \mathrm{s}^{2}
C) 0.314 m/s20.314 \mathrm{~m} / \mathrm{s}^{2}
D) 0.165 m/s20.165 \mathrm{~m} / \mathrm{s}^{2}
E) 0.215 m/s20.215 \mathrm{~m} / \mathrm{s}^{2}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the magnitude of the (total) acceleration of a point 4.00 cm4.00 \mathrm{~cm} from the center at the time 10.0 seconds from the start?

A) 0.65 m/s20.65 \mathrm{~m} / \mathrm{s}^{2}
B) 1.25 m/s21.25 \mathrm{~m} / \mathrm{s}^{2}
C) 1.00 m/s21.00 \mathrm{~m} / \mathrm{s}^{2}
D) 1.37 m/s21.37 \mathrm{~m} / \mathrm{s}^{2}
E) 1.86 m/s21.86 \mathrm{~m} / \mathrm{s}^{2}
Question
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the magnitude of the (total) acceleration of a point 4.00 cm4.00 \mathrm{~cm} from the center at the time 30.0 seconds from the start?

A) 0.0324 m/s20.0324 \mathrm{~m} / \mathrm{s}^{2}
B) 0.0444 m/s20.0444 \mathrm{~m} / \mathrm{s}^{2}
C) 0.0650 m/s20.0650 \mathrm{~m} / \mathrm{s}^{2}
D) 0.0522 m/s20.0522 \mathrm{~m} / \mathrm{s}^{2}
E) 0.0243 m/s20.0243 \mathrm{~m} / \mathrm{s}^{2}
Question
A 2.00 kg2.00 \mathrm{~kg} mass is moving in a circular path with a radius of 5.00 cm5.00 \mathrm{~cm} . The mass starts from rest and, with constant angular acceleration, obtains an angular velocity of 6.00rad/sec6.00 \mathrm{rad} / \mathrm{sec} in 3.00sec3.00 \mathrm{sec} . The mass then comes to a stop with constant angular acceleration in 4.00sec4.00 \mathrm{sec} . The radial component of acceleration of the mass at 2.00sec2.00 \mathrm{sec} is

A) 0.800 m/s20.800 \mathrm{~m} / \mathrm{s}^{2} .
B) 0.656 m/s20.656 \mathrm{~m} / \mathrm{s}^{2} .
C) 0.100 m/s20.100 \mathrm{~m} / \mathrm{s}^{2} .
D) 0.980 m/s20.980 \mathrm{~m} / \mathrm{s}^{2} .
E) 1.220 m/s21.220 \mathrm{~m} / \mathrm{s}^{2} .
Question
A 2.0 kg2.0 \mathrm{~kg} mass is moving in a circular path with a radius of 5.00 cm5.00 \mathrm{~cm} . The mass starts from rest and, with constant angular acceleration, obtains an angular velocity of 6.00rad/sec6.00 \mathrm{rad} / \mathrm{sec} in 3.00sec3.00 \mathrm{sec} . The mass then comes to a stop with constant angular acceleration in 4.00sec4.00 \mathrm{sec} . The radial component of acceleration of the mass at 5.00sec5.00 \mathrm{sec} after the start is

A) 2.50 m/s22.50 \mathrm{~m} / \mathrm{s}^{2} .
B) 0.980 m/s20.980 \mathrm{~m} / \mathrm{s}^{2} .
C) 0.450 m/s20.450 \mathrm{~m} / \mathrm{s}^{2} .
D) 1.25 m/s21.25 \mathrm{~m} / \mathrm{s}^{2} .
E) 2.03 m/s22.03 \mathrm{~m} / \mathrm{s}^{2} .
Question
A CD has a diameter of 12.0 cm12.0 \mathrm{~cm} and is rotating at an angular velocity of 10.0rad/sec10.0 \mathrm{rad} / \mathrm{sec} . If the CD\mathrm{CD} has a constant angular acceleration of 0.5rad/sec2-0.5 \mathrm{rad} / \mathrm{sec}^{2} , then the angular velocity of the CD\mathrm{CD} after 3.0sec3.0 \mathrm{sec} is

A) 6.2rad/s6.2 \mathrm{rad} / \mathrm{s} .
B) 9.8rad/s9.8 \mathrm{rad} / \mathrm{s} .
C) 8.5rad/s8.5 \mathrm{rad} / \mathrm{s} .
D) 7.9rad/s7.9 \mathrm{rad} / \mathrm{s} .
E) 5.7rad/s5.7 \mathrm{rad} / \mathrm{s} .
Question
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} starts from rest and has a constant angular acceleration of 2.00 rad/sec2\mathrm{rad} / \mathrm{sec}^{2} , then the radial acceleration of a point 3.00 cm3.00 \mathrm{~cm} from the center of the CD after 3.00sec3.00 \mathrm{sec} is

A) 1.58 m/s21.58 \mathrm{~m} / \mathrm{s}^{2} .
B) 0.950 m/s20.950 \mathrm{~m} / \mathrm{s}^{2} .
C) 1.25 m/s21.25 \mathrm{~m} / \mathrm{s}^{2} .
D) 1.08 m/s21.08 \mathrm{~m} / \mathrm{s}^{2} .
E) 1.83 m/s21.83 \mathrm{~m} / \mathrm{s}^{2} .
Question
A 4,000 kg satellite is traveling in a circular orbit 200 km200 \mathrm{~km} above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the magnitude of the acceleration of the marble as viewed by the observers inside the satellite? (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011 Nm2/kg2)\left(M_{E}=5.98 \times 10^{24} \mathrm{~kg}, R_{E}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 2.64 m/s22.64 \mathrm{~m} / \mathrm{s}^{2}
B) 4.90 m/s24.90 \mathrm{~m} / \mathrm{s}^{2}
C) 0.00 m/s20.00 \mathrm{~m} / \mathrm{s}^{2}
D) 1.62 m/s21.62 \mathrm{~m} / \mathrm{s}^{2}
E) 9.24 m/s29.24 \mathrm{~m} / \mathrm{s}^{2}
Question
A 4,000 kg satellite is traveling in a circular orbit 200 km200 \mathrm{~km} above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the magnitude of the acceleration of the marble as viewed by the observers on the Earth? (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011 Nm2/kg2)\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 8.90 m/s28.90 \mathrm{~m} / \mathrm{s}^{2}
B) 7.95 m/s27.95 \mathrm{~m} / \mathrm{s}^{2}
C) 9.80 m/s29.80 \mathrm{~m} / \mathrm{s}^{2}
D) 9.24 m/s29.24 \mathrm{~m} / \mathrm{s}^{2}
E) 8.62 m/s28.62 \mathrm{~m} / \mathrm{s}^{2}
Question
A boy on a bicycle rides in a circle of radius r0r_{0} at speed v0v_{0} . If the boy rides at the same radius r0r_{0} , by what approximate factor must he change his speed in order to triple his radial acceleration?

A) 9.0
B) 3.0
C) 0.33
D) 1.7
E) 0.58
F) 0.11
Question
A boy on a bicycle rides in a circle of radius r0r_{0} at speed v0v_{0} . If the boy now rides at a radius equal to half the initial radius ror_{\mathrm{o}} , by what approximate factor must he change his speed in order to have the same radial acceleration?

A) 0.25
B) 2
C) 0.71
D) 4
E) 0.5
F) 1.4
Question
Two planets travel in circular orbits about a star at radii of ra=2Rr_{a}=2 R and rb=Rr_{b}=R , respectively. What is the ratio of their periods Ta/Tb\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{b}} ?

A) 1.4
B) 1.3
C) 2.8
D) 2.0
E) 1.6
Question
The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms33.085 \mathrm{~ms} . It is estimated to have an equatorial radius of 15 km15 \mathrm{~km} , about average for a neutron star. The pulsar is slowing in its rotation so that it is expected to come to rest 9.5×1010 s9.5 \times 1010 \mathrm{~s} in the future. Assuming it is slowing with a constant angular acceleration, what is the tangential acceleration of an object on the neutron star's equator?

A) 3.2×1010 m/s23.2 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2}
B) 2.0×109 m/s22.0 \times 10^{-9} \mathrm{~m} / \mathrm{s}^{2}
C) 4.8×106 m/s24.8 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}
D) 3.0×105 m/s23.0 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}
E) 7.6×107 m/s27.6 \times 10^{-7} \mathrm{~m} / \mathrm{s}^{2}
Question
The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms33.085 \mathrm{~ms} . It is estimated to have an equatorial radius of 15 km15 \mathrm{~km} , about average for a neutron star. The pulsar is slowing in its rotation so that it is expected to come to rest 9.5×1010 s9.5 \times 10^{10} \mathrm{~s} in the future. What is the magnitude of the average angular acceleration in this situation?

A) 3.2×1010rad/s23.2 \times 10^{-10} \mathrm{rad} / \mathrm{s}^{2}
B) 2.0×109rad/s22.0 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2}
C) 3.0×105rad/s23.0 \times 10^{-5} \mathrm{rad} / \mathrm{s}^{2}
D) 7.6×107rad/s27.6 \times 10^{-7} \mathrm{rad} / \mathrm{s}^{2}
E) 4.8×106rad/s24.8 \times 10^{-6} \mathrm{rad} / \mathrm{s}^{2}
Question
At what distance from the center of the Earth would one's weight be one third of that recorded on the Earth's surface? Let the Earth's radius be R\mathrm{R} .

A) 1.7R1.7 \mathrm{R}
B) 0.4R0.4 \mathrm{R}
C) 1.4R1.4 \mathrm{R}
D) 0.5R0.5 \mathrm{R}
E) 3R
F) R\mathrm{R}
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/43
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Circular Motion
1
An object is moving in a circular path with a radius of 5.00 m5.00 \mathrm{~m} . If the object moves through an angle of 270 degrees, then the tangential distance traveled by the object is

A) 23.6 m23.6 \mathrm{~m} .
B) 4.71 m4.71 \mathrm{~m} .
C) 15.2 m15.2 \mathrm{~m} .
D) 40.2 m40.2 \mathrm{~m} .
23.6 m23.6 \mathrm{~m} .
2
An object is moving in a circular path of radius 4.00 m4.00 \mathrm{~m} . If the object moves through an angle of 30.0 degrees, then the tangential distance traveled by the object is

A) 1.75 m1.75 \mathrm{~m}
B) 2.09 m2.09 \mathrm{~m} .
C) 2.84 m2.84 \mathrm{~m} .
D) 3.66 m3.66 \mathrm{~m} .
E) 3.21 m3.21 \mathrm{~m} .
2.09 m2.09 \mathrm{~m} .
3
An object is moving in a circular path of radius 4.00 m4.00 \mathrm{~m} . If the object moves through an angle of 1.2 radians, then the tangential distance traveled by the object is

A) 4.8 m4.8 \mathrm{~m} .
B) 3.8 m3.8 \mathrm{~m} .
C) 2.8 m2.8 \mathrm{~m} .
D) 4.3 m4.3 \mathrm{~m} .
E) 3.2 m3.2 \mathrm{~m} .
4.8 m4.8 \mathrm{~m} .
4
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant angular speed of 20.0 radians per second, then the period of the rotational motion is

A) 0.421 s0.421 \mathrm{~s} .
B) 0.143 s0.143 \mathrm{~s} .
C) 0.224 s0.224 \mathrm{~s} .
D) 0.314 s0.314 \mathrm{~s} .
E) 0.558 s0.558 \mathrm{~s} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
5
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant angular speed of 20.0 radians per second, then the frequency of the rotational motion is

A) 2.14 Hz2.14 \mathrm{~Hz} .
B) 4.50 Hz4.50 \mathrm{~Hz} .
C) 3.83 Hz3.83 \mathrm{~Hz}
D) 4.89 Hz4.89 \mathrm{~Hz} .
E) 3.18 Hz3.18 \mathrm{~Hz}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
6
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 3.18 Hz3.18 \mathrm{~Hz} , then the period of the rotational motion is

A) 0.441 s0.441 \mathrm{~s} .
B) 0.582 s0.582 \mathrm{~s} .
C) 0.698 s0.698 \mathrm{~s} .
D) 0.750 s0.750 \mathrm{~s} .
E) 0.314 s0.314 \mathrm{~s} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
7
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CDC D is rotating with a constant period of 0.314 seconds, then the frequency of the rotational motion is

A) 3.18 Hz3.18 \mathrm{~Hz} .
B) 2.15 Hz2.15 \mathrm{~Hz} .
C) 2.83 Hz2.83 \mathrm{~Hz} .
D) 3.67 Hz3.67 \mathrm{~Hz} .
E) 4.00 Hz4.00 \mathrm{~Hz} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
8
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 4.00 rotations per second, then the period of the rotational motion is

A) 0.750 s0.750 \mathrm{~s} .
B) 1.25 s1.25 \mathrm{~s} .
C) 0.500 s0.500 \mathrm{~s} .
D) 0.250 s0.250 \mathrm{~s} .
E) 1.00 s1.00 \mathrm{~s}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
9
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 4.00 rotations per second, then the linear speed of a point on the circumference is

A) 1.31 m/s1.31 \mathrm{~m} / \mathrm{s} .
B) 2.00 m/s2.00 \mathrm{~m} / \mathrm{s} .
C) 1.51 m/s1.51 \mathrm{~m} / \mathrm{s} .
D) 1.25 m/s1.25 \mathrm{~m} / \mathrm{s} .
E) 1.82 m/s1.82 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
10
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} is rotating at a constant frequency of 6.00 rotations per second, then the angular speed is

A) 26.9rad/s26.9 \mathrm{rad} / \mathrm{s} .
B) 21.5rad/s21.5 \mathrm{rad} / \mathrm{s} .
C) 37.7rad/s37.7 \mathrm{rad} / \mathrm{s} .
D) 33.3rad/s33.3 \mathrm{rad} / \mathrm{s} .
E) 29.6rad/s29.6 \mathrm{rad} / \mathrm{s} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
11
A 4.00 kg4.00 \mathrm{~kg} mass is moving in a circular path of radius 2.50 m2.50 \mathrm{~m} with a constant angular speed of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The magnitude of the radial force on the mass is

A) 250 N250 \mathrm{~N} .
B) 107 N107 \mathrm{~N} .
C) 94.0 N94.0 \mathrm{~N} .
D) 153 N153 \mathrm{~N} .
E) 185 N185 \mathrm{~N} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
12
A 4.00 kg4.00 \mathrm{~kg} mass is moving in a circular path of radius 3.20 m3.20 \mathrm{~m} with a constant linear speed of 6.20 m/s6.20 \mathrm{~m} / \mathrm{s} . The radial force on the mass is

A) 59.0 N59.0 \mathrm{~N} toward the center.
B) 48.1 N48.1 \mathrm{~N} toward the center.
C) 50.5 N50.5 \mathrm{~N} away from the center.
D) 62.3 N62.3 \mathrm{~N} away from the center.
E) 40.2 N40.2 \mathrm{~N} away from the center.
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
13
A 2.60 kg2.60 \mathrm{~kg} mass is moving in a circular path with a constant angular speed of 5.50rad/sec5.50 \mathrm{rad} / \mathrm{sec} and with a linear speed of 3.50 m/s3.50 \mathrm{~m} / \mathrm{s} . The magnitude of the radial force on the mass is

A) 50.1 N50.1 \mathrm{~N} .
B) 66.7 N66.7 \mathrm{~N} .
C) 30.4 N30.4 \mathrm{~N} .
D) 40.5 N40.5 \mathrm{~N} .
E) 60.5 N60.5 \mathrm{~N} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
14
An airplane is traveling at 150 m/s150 \mathrm{~m} / \mathrm{s} in level flight. In order to make a change in direction, the airplane travels in a horizontal curved path. To fly in the curved path, the pilot banks the airplane at an angle such that the lift has a horizontal component that provides the horizontal radial acceleration to move in a horizontal circular path. If the airplane is banked at an angle of 12.0 degrees, then the radius of curvature of the curved path of the airplane is

A) 8.74 km8.74 \mathrm{~km} .
B) 6.90 km6.90 \mathrm{~km}
C) 7.33 km7.33 \mathrm{~km} .
D) 10.8 km10.8 \mathrm{~km}
E) 8.00 km8.00 \mathrm{~km} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
15
An airplane is traveling at 250 m/s250 \mathrm{~m} / \mathrm{s} in level flight. In order to make a change in direction, the airplane travels in a horizontal curved path. To fly in the curved path, the pilot banks the airplane at an angle such that the lift has a horizontal component that provides the horizontal radial acceleration to move in a horizontal circular path. If the airplane is banked at an angle of 15.0 degrees, then the radius of curvature of the curved path of the airplane is

A) 27.5 km27.5 \mathrm{~km} .
B) 23.8 km23.8 \mathrm{~km} .
C) 30.1 km30.1 \mathrm{~km}
D) 20.1 km20.1 \mathrm{~km}
E) 25.0 km25.0 \mathrm{~km} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
16
A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km800 \mathrm{~km} . The speed of the satellite is (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11}\right. Nm2/kg2)\left.\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 5,950 m/s5,950 \mathrm{~m} / \mathrm{s}
B) 7,460 m/s7,460 \mathrm{~m} / \mathrm{s} .
C) 6,430 m/s6,430 \mathrm{~m} / \mathrm{s} .
D) 5,350 m/s5,350 \mathrm{~m} / \mathrm{s} .
E) 6,830 m/s6,830 \mathrm{~m} / \mathrm{s} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
17
A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km800 \mathrm{~km} . The angular speed of the satellite as it orbits the Earth is (ME=5.98×1024 kg,RE=6.37\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37\right. ×106 m,G=6.67×1011 Nm2/kg2\times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2} )

A) 1.04×103rad/s1.04 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
B) 1.44×103rad/s1.44 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
C) 9.50×104rad/s9.50 \times 10^{-4} \mathrm{rad} / \mathrm{s} .
D) 2.20×103rad/s2.20 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
E) 1.90×103rad/s1.90 \times 10^{-3} \mathrm{rad} / \mathrm{s} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
18
A 5,000 kg5,000 \mathrm{~kg} satellite is orbiting the Earth in a geostationary orbit. The height of the satellite above the surface of the Earth is (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011 Nm2/kg2)\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 8.29×107 m8.29 \times 10^{7} \mathrm{~m} .
B) 2.95×107 m2.95 \times 10^{7} \mathrm{~m} .
C) 1.40×107 m1.40 \times 10^{7} \mathrm{~m}
D) 3.59×107 m3.59 \times 10^{7} \mathrm{~m} .
E) 6.35×107 m6.35 \times 10^{7} \mathrm{~m} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
19
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the linear speed of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 2.0 seconds from the start?

A) 0.18 m/s0.18 \mathrm{~m} / \mathrm{s}
B) 0.060 m/s0.060 \mathrm{~m} / \mathrm{s}
C) 0.080 m/s0.080 \mathrm{~m} / \mathrm{s}
D) 0.10 m/s0.10 \mathrm{~m} / \mathrm{s}
E) 0.14 m/s0.14 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
20
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 2.0 seconds from the start?

A) 0.21 m/s20.21 \mathrm{~m} / \mathrm{s}^{2}
B) 0.28 m/s20.28 \mathrm{~m} / \mathrm{s}^{2}
C) 0.30 m/s20.30 \mathrm{~m} / \mathrm{s}^{2}
D) 0.37 m/s20.37 \mathrm{~m} / \mathrm{s}^{2}
E) 0.16 m/s20.16 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
21
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15 seconds15 \mathrm{~seconds} and then slows to a stop in 12.0 second with a constant angular acceleration. What is the angular distance traveled by a point 4.0 cm4.0 \mathrm{~cm} from the center, at the time 2.0 seconds from the start?

A) 2.0rad2.0 \mathrm{rad}
B) 6.0rad6.0 \mathrm{rad}
C) 10.0rad10.0 \mathrm{rad}
D) 8.0rad8.0 \mathrm{rad}
E) 4.0rad4.0 \mathrm{rad}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
22
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 10.0 seconds from the start?

A) 0.6 m/s20.6 \mathrm{~m} / \mathrm{s}^{2}
B) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2}
C) 0.9 m/s20.9 \mathrm{~m} / \mathrm{s}^{2}
D) 1.8 m/s21.8 \mathrm{~m} / \mathrm{s}^{2}
E) 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
23
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds15.0 \mathrm{~seconds} and then slows to a stop in 12.0 second with a constant angular acceleration. What is the angular distance traveled by a point 4.00 cm4.00 \mathrm{~cm} from the center, at the time 10.0 seconds from the start?

A) 27.6rad27.6 \mathrm{rad}
B) 48.2rad48.2 \mathrm{rad}
C) 40.7rad40.7 \mathrm{rad}
D) 51.2rad51.2 \mathrm{rad}
E) 37.5rad37.5 \mathrm{rad}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
24
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the linear speed of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 10.0 seconds from the start?

A) 0.20 m/s0.20 \mathrm{~m} / \mathrm{s}
B) 0.40 m/s0.40 \mathrm{~m} / \mathrm{s}
C) 0.50 m/s0.50 \mathrm{~m} / \mathrm{s}
D) 0.30 m/s0.30 \mathrm{~m} / \mathrm{s}
E) 0.10 m/s0.10 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
25
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 25.0 seconds from the start?

A) 0.47 m/s20.47 \mathrm{~m} / \mathrm{s}^{2}
B) 0.34 m/s20.34 \mathrm{~m} / \mathrm{s}^{2}
C) 0.40 m/s20.40 \mathrm{~m} / \mathrm{s}^{2}
D) 0.24 m/s20.24 \mathrm{~m} / \mathrm{s}^{2}
E) 0.20 m/s20.20 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
26
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD\mathrm{CD} continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the angular distance traveled by a point 4.00 cm4.00 \mathrm{~cm} from the center, at the time 25.0 seconds from the start?

A) 205rad205 \mathrm{rad}
B) 237rad237 \mathrm{rad}
C) 193rad193 \mathrm{rad}
D) 274rad274 \mathrm{rad}
E) 107rad107 \mathrm{rad}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
27
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the linear speed of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 25.0 seconds from the start?

A) 0.00 m/s0.00 \mathrm{~m} / \mathrm{s}
B) 0.10 m/s0.10 \mathrm{~m} / \mathrm{s}
C) 0.017 m/s0.017 \mathrm{~m} / \mathrm{s}
D) 0.12 m/s0.12 \mathrm{~m} / \mathrm{s}
E) 0.083 m/s0.083 \mathrm{~m} / \mathrm{s}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
28
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.0rad/sec21.0 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} . The CD\mathrm{CD} continues rotating at 5.0rad/sec5.0 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the radial acceleration of a point 4.0 cm4.0 \mathrm{~cm} from the center at the time 15.0 seconds from the start?

A) 1.8 m/s21.8 \mathrm{~m} / \mathrm{s}^{2}
B) 0.5 m/s20.5 \mathrm{~m} / \mathrm{s}^{2}
C) 2.6 m/s22.6 \mathrm{~m} / \mathrm{s}^{2}
D) 1.0 m/s21.0 \mathrm{~m} / \mathrm{s}^{2}
E) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
29
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the magnitude of the (total) acceleration of a point 4.00 cm4.00 \mathrm{~cm} from the center at the time 2.00 seconds from the start?

A) 0.100 m/s20.100 \mathrm{~m} / \mathrm{s}^{2}
B) 0.450 m/s20.450 \mathrm{~m} / \mathrm{s}^{2}
C) 0.314 m/s20.314 \mathrm{~m} / \mathrm{s}^{2}
D) 0.165 m/s20.165 \mathrm{~m} / \mathrm{s}^{2}
E) 0.215 m/s20.215 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
30
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the magnitude of the (total) acceleration of a point 4.00 cm4.00 \mathrm{~cm} from the center at the time 10.0 seconds from the start?

A) 0.65 m/s20.65 \mathrm{~m} / \mathrm{s}^{2}
B) 1.25 m/s21.25 \mathrm{~m} / \mathrm{s}^{2}
C) 1.00 m/s21.00 \mathrm{~m} / \mathrm{s}^{2}
D) 1.37 m/s21.37 \mathrm{~m} / \mathrm{s}^{2}
E) 1.86 m/s21.86 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
31
A CD with a diameter of 12.0 cm12.0 \mathrm{~cm} starts from rest and with a constant angular acceleration of 1.00rad/sec21.00 \mathrm{rad} / \mathrm{sec}^{2} acquires an angular velocity of 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} . The CD continues rotating at 5.00rad/sec5.00 \mathrm{rad} / \mathrm{sec} for 15.0 seconds and then slows to a stop in 12.0 second with a constant angular acceleration. What is the magnitude of the (total) acceleration of a point 4.00 cm4.00 \mathrm{~cm} from the center at the time 30.0 seconds from the start?

A) 0.0324 m/s20.0324 \mathrm{~m} / \mathrm{s}^{2}
B) 0.0444 m/s20.0444 \mathrm{~m} / \mathrm{s}^{2}
C) 0.0650 m/s20.0650 \mathrm{~m} / \mathrm{s}^{2}
D) 0.0522 m/s20.0522 \mathrm{~m} / \mathrm{s}^{2}
E) 0.0243 m/s20.0243 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
32
A 2.00 kg2.00 \mathrm{~kg} mass is moving in a circular path with a radius of 5.00 cm5.00 \mathrm{~cm} . The mass starts from rest and, with constant angular acceleration, obtains an angular velocity of 6.00rad/sec6.00 \mathrm{rad} / \mathrm{sec} in 3.00sec3.00 \mathrm{sec} . The mass then comes to a stop with constant angular acceleration in 4.00sec4.00 \mathrm{sec} . The radial component of acceleration of the mass at 2.00sec2.00 \mathrm{sec} is

A) 0.800 m/s20.800 \mathrm{~m} / \mathrm{s}^{2} .
B) 0.656 m/s20.656 \mathrm{~m} / \mathrm{s}^{2} .
C) 0.100 m/s20.100 \mathrm{~m} / \mathrm{s}^{2} .
D) 0.980 m/s20.980 \mathrm{~m} / \mathrm{s}^{2} .
E) 1.220 m/s21.220 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
33
A 2.0 kg2.0 \mathrm{~kg} mass is moving in a circular path with a radius of 5.00 cm5.00 \mathrm{~cm} . The mass starts from rest and, with constant angular acceleration, obtains an angular velocity of 6.00rad/sec6.00 \mathrm{rad} / \mathrm{sec} in 3.00sec3.00 \mathrm{sec} . The mass then comes to a stop with constant angular acceleration in 4.00sec4.00 \mathrm{sec} . The radial component of acceleration of the mass at 5.00sec5.00 \mathrm{sec} after the start is

A) 2.50 m/s22.50 \mathrm{~m} / \mathrm{s}^{2} .
B) 0.980 m/s20.980 \mathrm{~m} / \mathrm{s}^{2} .
C) 0.450 m/s20.450 \mathrm{~m} / \mathrm{s}^{2} .
D) 1.25 m/s21.25 \mathrm{~m} / \mathrm{s}^{2} .
E) 2.03 m/s22.03 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
34
A CD has a diameter of 12.0 cm12.0 \mathrm{~cm} and is rotating at an angular velocity of 10.0rad/sec10.0 \mathrm{rad} / \mathrm{sec} . If the CD\mathrm{CD} has a constant angular acceleration of 0.5rad/sec2-0.5 \mathrm{rad} / \mathrm{sec}^{2} , then the angular velocity of the CD\mathrm{CD} after 3.0sec3.0 \mathrm{sec} is

A) 6.2rad/s6.2 \mathrm{rad} / \mathrm{s} .
B) 9.8rad/s9.8 \mathrm{rad} / \mathrm{s} .
C) 8.5rad/s8.5 \mathrm{rad} / \mathrm{s} .
D) 7.9rad/s7.9 \mathrm{rad} / \mathrm{s} .
E) 5.7rad/s5.7 \mathrm{rad} / \mathrm{s} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
35
ACD\mathrm{A} C D has a diameter of 12.0 cm12.0 \mathrm{~cm} . If the CD\mathrm{CD} starts from rest and has a constant angular acceleration of 2.00 rad/sec2\mathrm{rad} / \mathrm{sec}^{2} , then the radial acceleration of a point 3.00 cm3.00 \mathrm{~cm} from the center of the CD after 3.00sec3.00 \mathrm{sec} is

A) 1.58 m/s21.58 \mathrm{~m} / \mathrm{s}^{2} .
B) 0.950 m/s20.950 \mathrm{~m} / \mathrm{s}^{2} .
C) 1.25 m/s21.25 \mathrm{~m} / \mathrm{s}^{2} .
D) 1.08 m/s21.08 \mathrm{~m} / \mathrm{s}^{2} .
E) 1.83 m/s21.83 \mathrm{~m} / \mathrm{s}^{2} .
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
36
A 4,000 kg satellite is traveling in a circular orbit 200 km200 \mathrm{~km} above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the magnitude of the acceleration of the marble as viewed by the observers inside the satellite? (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011 Nm2/kg2)\left(M_{E}=5.98 \times 10^{24} \mathrm{~kg}, R_{E}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 2.64 m/s22.64 \mathrm{~m} / \mathrm{s}^{2}
B) 4.90 m/s24.90 \mathrm{~m} / \mathrm{s}^{2}
C) 0.00 m/s20.00 \mathrm{~m} / \mathrm{s}^{2}
D) 1.62 m/s21.62 \mathrm{~m} / \mathrm{s}^{2}
E) 9.24 m/s29.24 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
37
A 4,000 kg satellite is traveling in a circular orbit 200 km200 \mathrm{~km} above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the magnitude of the acceleration of the marble as viewed by the observers on the Earth? (ME=5.98×1024 kg,RE=6.37×106 m,G=6.67×1011 Nm2/kg2)\left(\mathrm{M}_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, \mathrm{R}_{\mathrm{E}}=6.37 \times 10^{6} \mathrm{~m}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}\right)

A) 8.90 m/s28.90 \mathrm{~m} / \mathrm{s}^{2}
B) 7.95 m/s27.95 \mathrm{~m} / \mathrm{s}^{2}
C) 9.80 m/s29.80 \mathrm{~m} / \mathrm{s}^{2}
D) 9.24 m/s29.24 \mathrm{~m} / \mathrm{s}^{2}
E) 8.62 m/s28.62 \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
38
A boy on a bicycle rides in a circle of radius r0r_{0} at speed v0v_{0} . If the boy rides at the same radius r0r_{0} , by what approximate factor must he change his speed in order to triple his radial acceleration?

A) 9.0
B) 3.0
C) 0.33
D) 1.7
E) 0.58
F) 0.11
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
39
A boy on a bicycle rides in a circle of radius r0r_{0} at speed v0v_{0} . If the boy now rides at a radius equal to half the initial radius ror_{\mathrm{o}} , by what approximate factor must he change his speed in order to have the same radial acceleration?

A) 0.25
B) 2
C) 0.71
D) 4
E) 0.5
F) 1.4
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
40
Two planets travel in circular orbits about a star at radii of ra=2Rr_{a}=2 R and rb=Rr_{b}=R , respectively. What is the ratio of their periods Ta/Tb\mathrm{T}_{\mathrm{a}} / \mathrm{T}_{\mathrm{b}} ?

A) 1.4
B) 1.3
C) 2.8
D) 2.0
E) 1.6
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
41
The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms33.085 \mathrm{~ms} . It is estimated to have an equatorial radius of 15 km15 \mathrm{~km} , about average for a neutron star. The pulsar is slowing in its rotation so that it is expected to come to rest 9.5×1010 s9.5 \times 1010 \mathrm{~s} in the future. Assuming it is slowing with a constant angular acceleration, what is the tangential acceleration of an object on the neutron star's equator?

A) 3.2×1010 m/s23.2 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2}
B) 2.0×109 m/s22.0 \times 10^{-9} \mathrm{~m} / \mathrm{s}^{2}
C) 4.8×106 m/s24.8 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}
D) 3.0×105 m/s23.0 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}
E) 7.6×107 m/s27.6 \times 10^{-7} \mathrm{~m} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
42
The Crab Pulsar is a neutron star, rotating with a period of about 33.085 ms33.085 \mathrm{~ms} . It is estimated to have an equatorial radius of 15 km15 \mathrm{~km} , about average for a neutron star. The pulsar is slowing in its rotation so that it is expected to come to rest 9.5×1010 s9.5 \times 10^{10} \mathrm{~s} in the future. What is the magnitude of the average angular acceleration in this situation?

A) 3.2×1010rad/s23.2 \times 10^{-10} \mathrm{rad} / \mathrm{s}^{2}
B) 2.0×109rad/s22.0 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2}
C) 3.0×105rad/s23.0 \times 10^{-5} \mathrm{rad} / \mathrm{s}^{2}
D) 7.6×107rad/s27.6 \times 10^{-7} \mathrm{rad} / \mathrm{s}^{2}
E) 4.8×106rad/s24.8 \times 10^{-6} \mathrm{rad} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
43
At what distance from the center of the Earth would one's weight be one third of that recorded on the Earth's surface? Let the Earth's radius be R\mathrm{R} .

A) 1.7R1.7 \mathrm{R}
B) 0.4R0.4 \mathrm{R}
C) 1.4R1.4 \mathrm{R}
D) 0.5R0.5 \mathrm{R}
E) 3R
F) R\mathrm{R}
Unlock Deck
Unlock for access to all 43 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 43 flashcards in this deck.