Deck 29: Portfolio Variance and Stock Weight Calculations

Full screen (f)
exit full mode
Question
Exhibit 7A.1
W1=[E(σ2)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right]

-Refer to Exhibit 7A.1.What weight of security 1 gives the minimum portfolio variance when r1.2 = .60,E(?1)= .10 and E(?2)= .16?

A) .0244
B) .3679
C) .5697
D) .6309
E) .9756
Use Space or
up arrow
down arrow
to flip the card.
Question
Exhibit 7A.1
W1=[E(σ2)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right]

-Refer to Exhibit 7A.1.Show the minimum portfolio variance for a two stock portfolio when r1.2 = 1.

A) E(?2) ¸ [E(?1) - E(?2)]
B) E(?2) ¸ [E(?1) + E(?2)]
C) E(?1) ¸ [E(?1) - E(?2)]
D) E(?1) ¸ [E(?1) + E(?2)]
E) None of the above
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/2
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 29: Portfolio Variance and Stock Weight Calculations
Exhibit 7A.1
W1=[E(σ2)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right]

-Refer to Exhibit 7A.1.What weight of security 1 gives the minimum portfolio variance when r1.2 = .60,E(?1)= .10 and E(?2)= .16?

A) .0244
B) .3679
C) .5697
D) .6309
E) .9756
.9756
Exhibit 7A.1
W1=[E(σ2)2r1.2E(σ1)E(σ2)]÷[E(σ1)2+E(σ2)22r1.2E(σ1)E(σ2)]\mathrm { W } _ { 1 } = \left[ \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right] \div \left[ \mathrm { E } \left( \sigma _ { 1 } \right) ^ { 2 } + \mathrm { E } \left( \sigma _ { 2 } \right) ^ { 2 } - 2 r _ { 1.2 } \mathrm { E } \left( \sigma _ { 1 } \right) \mathrm { E } \left( \sigma _ { 2 } \right) \right]

-Refer to Exhibit 7A.1.Show the minimum portfolio variance for a two stock portfolio when r1.2 = 1.

A) E(?2) ¸ [E(?1) - E(?2)]
B) E(?2) ¸ [E(?1) + E(?2)]
C) E(?1) ¸ [E(?1) - E(?2)]
D) E(?1) ¸ [E(?1) + E(?2)]
E) None of the above
E(?2) ¸ [E(?1) - E(?2)]
locked card icon
Unlock Deck
Unlock for access to all 2 flashcards in this deck.