Deck 5: Security-Market Indexes

Full screen (f)
exit full mode
Question
There is a high correlation between the Wilshire 5000 index and the alternative NYSE series (S&P 500 and the NYSE),representing the substantial influence of large NYSE stocks on the Wilshire 5000 index.
Use Space or
up arrow
down arrow
to flip the card.
Question
The Dow Jones Industrial Average is a value weighted average.
Question
A value weighted index automatically adjusts for stock splits.
Question
There are no composite series currently available that will measure the performance of all securities (i.e.stocks and bonds)in a given country.
Question
The correlations among the U.S.investment-grade-bond series were very high because all rates of return for investment-grade bonds over time are impacted by common macroeconomic variables.
Question
To solve comparability problems across countries,global equity indexes with consistent sample selection,weighting and computational procedure have been developed.
Question
A two for one stock split causes the divisor in a price-weighted series to decline.
Question
A price weighted series is disproportionately influenced by larger capitalization companies.
Question
An equally weighted indicator series is also known as an unweighted indicator series.
Question
Bond-market indicator series have been around much longer than stock-market indicator series.
Question
The general purpose of a market indicator series is to provide an overall indication of aggregate market changes or movements.
Question
A bond market index is easier to create than a stock market index because the universe of bonds is much broader than that of stocks.
Question
Unlike the Dow Jones Industrial Average,the Nikkei-Dow Jones Average is price weighted.
Question
The low correlations between the U.S.and Japan confirm the benefit of global diversification.
Question
The NYSE series should have higher rates of return and risk measures than the AMEX and OTC series.
Question
It is easier to construct an indicator series for bonds because of their relatively stable returns pattern.
Question
The New York Stock Exchange Index is based on a sample of all of the New York Stock Exchange stocks.
Question
The major U.S.stock indexes are highly correlated.
Question
The Dow Jones Industrial Average has been criticized for being blue-chip biased.
Question
An aggregate market index can be used as a benchmark to judge the performance of professional money managers.
Question
The Standard & Poor's 500 index is an example of a value weighted index.
Question
In a value weighted index

A) Exchange rate fluctuations have a large impact.
B) Exchange rate fluctuations have a small impact.
C) Large companies have a disproportionate influence on the index.
D) Small companies have an exaggerated effect on the index.
E) None of the above
Question
Which of the following is true of the various market index series?

A) A low correlation exists between the U.S. indexes and those of Japan.
B) The NYSE series have higher rates of return and risk measures than the AMEX and OTC series.
C) A low correlation exists between alternative series that include almost all NYSE stocks.
D) A low correlation exists between alternative bond series.
E) None of the above
Question
The most common way to test a portfolio manager's performance is to compare the portfolio return to a benchmark.
Question
What effect does a stock substitution or stock split have on a price-weighted series?

A) Index remains the same, divisor will increase/decrease.
B) Divisor remains the same, index will increase/decrease.
C) Index and divisor will both remain the same.
D) Index and divisor will both reflect the changes (immediately).
E) Not enough information is provided.
Question
Which of the following are factors that make it difficult to create and maintain a bond index?

A) The universe of bonds is broader than stocks.
B) The universe of bonds is constantly changing due to new issues, bond maturities, calls, and bond sinking funds.
C) It is difficult to derive value, up-to-date prices.
D) Choices a and c
E) All of the above
Question
The Value Line Composite Average is calculated using the ____ of percentage price changes.

A) arithmetic average
B) harmonic average
C) expected value
D) geometric average
E) logarithmic average
Question
In a price weighted average stock market indicator series,the following type of stock has the greatest influence

A) The stock with the highest price
B) The stock with the lowest price
C) The stock with the highest market capitalization
D) The stock with the lowest market capitalization
E) The stock with the highest P/E ratio
Question
The Morgan Stanley group index for Europe,Australia,and the Far East (EAFE)is a price weighted index.
Question
Which of the following is not a global equity indicator series?

A) Morgan Stanley Capital International Indexes
B) Dow Jones World Stock Index
C) FT/S & P-Actuaries World Indexes
D) Merrill Lynch-Wilshire World Indexes
E) None of the above (that is, each is a global equity indicator series)
Question
Which of the following is not a use of security market indicator series?

A) To use as a benchmark of individual portfolio performance
B) To develop an index portfolio
C) To determine factors influencing aggregate security price movements
D) To use in the measurement of systematic risk
E) To use in the measurement of diversifiable risk
Question
Which of the following is not a U.S.investment-grade bond index?

A) Merrill Lynch
B) Ryan Treasury
C) Salomon Brothers
D) Lehman Brothers
E) None of the above (that is, all are U.S. investment-grade bond indexes)
Question
The Standard & Poor's International Index consists of 3 international,19 national,and 38 international industry indexes.
Question
A properly selected sample for use in constructing a market indicator series will consider the sample's source,size and

A) Breadth.
B) Average beta.
C) Value.
D) Variability.
E) Dividend record.
Question
An example of a value weighted stock market indicator series is the

A) Dow Jones Industrial Average.
B) Nikkei Dow Jones Average.
C) S & P 500 Index.
D) Value Line Index.
E) Shearson Lehman Hutton Index.
Question
The Ryan Treasury Index is an example of a

A) Bond market indicator series.
B) Stock market indicator series.
C) Composite security market series.
D) World market series.
E) Commodity market series.
Question
A price-weighted index such as the DJIA is a geometric mean of current stock prices.
Question
Which of the following is not a value-weighted series?

A) NASDAQ Industrial Index
B) Dow Jones Industrial Average
C) Wilshire 5000 Equity Index
D) American Stock Exchange Series
E) NASDAQ Composite Index
Question
Of the following indices,which includes the most comprehensive list of stocks?

A) New York Exchange Index
B) Standard and Poor's Index
C) American Stock Exchange Index
D) NASDAQ Series Index
E) Wilshire Equity Index
Question
Studies of correlations among monthly equity price index returns have found:

A) Low correlations between various U.S. equity indexes
B) High correlations between various U.S. equity indexes
C) High correlations between U.S. and non-U.S. equity indexes
D) Negative correlations between various U.S. equity indexes
E) None of the above
Question
Exhibit 5.1
Use the Information Below for the Following Problem(S)
                    
 Number of shares Glasing Prices (per share)\begin{array}{c}\begin{array}{lll}\text { Number of shares}\end{array}\begin{array}{lll}\text { Glasing Prices}\end{array}\begin{array}{lll}\text { (per share)} \end{array}\end{array}

 Companies  outstanding  Day T  Day T + 1 12,000$30.00$25.0027,00055.0060.0035,00020.0025.0044.00040.0045.00\begin{array}{cccc}\text { Companies } & \text { outstanding } & \text { Day T } & \text { Day T + 1 } \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4.000 & 40.00 & 45.00\end{array}


-Refer to Exhibit 5.1.For a value-weighted series,assume that Day T is the base period and the base value is 100.What is the new index value for Day T + 1 and what is the percentage change in the index from Day T?

A) 106.33, 6.33%
B) 107.48, 7.48%
C) 109.93, 9.93%
D) 108.7, 8.7%
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.What is the divisor at the beginning of January 14th?

A) 3.0
B) 2.5
C) 2.2734
D) 1.9375
E) None of the above
Question
Index movements are influenced by differential prices of the components in a(n)

A) Equally-weighted index.
B) Price-weighted index.
C) Unweighted index.
D) Value-weighted index.
E) All of the above
Question
A style index created to track ethical funds is known as:

A) Green index
B) SRI index
C) EAFE index
D) Freedom index
E) Ethical index
Question
Studies of correlations among monthly U.S.bond price index returns have found:

A) Low correlations between investment grade bonds and high yield bonds
B) High correlations between investment grade bonds and high yield bonds
C) Low correlations between various investment grade bond indexes
D) Negative correlations between investment grade bonds and high yield bonds
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for Jan.14th if the initial index value is 100.

A) 100
B) 102.31
C) 123.07
D) 111.54
E) None of the above
Question
Which index is created by first deriving the initial total market value of all stocks used in the index?

A) Equally-weighted index.
B) Price-weighted index.
C) Unweighted index.
D) Value-weighted index.
E) All of the above
Question
Which of the fundamental factors was not used in the Fundamental Index created by Research Affiliates,Inc.?

A) Sales
B) Profits (cash flow)
C) Leverage (debt/equity)
D) Net assets (book value)
E) Dividends
Question
Exhibit 5.1
Use the Information Below for the Following Problem(S)
                    
 Number of shares Glasing Prices (per share)\begin{array}{c}\begin{array}{lll}\text { Number of shares}\end{array}\begin{array}{lll}\text { Glasing Prices}\end{array}\begin{array}{lll}\text { (per share)} \end{array}\end{array}

 Companies  outstanding  Day T  Day T + 1 12,000$30.00$25.0027,00055.0060.0035,00020.0025.0044.00040.0045.00\begin{array}{cccc}\text { Companies } & \text { outstanding } & \text { Day T } & \text { Day T + 1 } \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4.000 & 40.00 & 45.00\end{array}


-Refer to Exhibit 5.1.Compute an unweighted price indicator series,using geometric means.What is the percentage change in the index from Day T to Day T+1? Assume a base index value of 100 on Day T.

A) 5.35%
B) 7.48%
C) 9.93%
D) 6.33%
E) None of the above
Question
The actual index movements are typically based on the arithmetic mean of the percent changes in price or value for the stocks in the

A) Price-weighted index.
B) Unweighted index.
C) Value-weighted index.
D) All of the above
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for January 15th if the initial index value is 100.

A) 102.31
B) 100
C) 123.07
D) 111.54
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighted average for January 16th.

A) 30
B) 32
C) 34
D) 36.13
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for Jan.13th if the initial index value is 100.

A) 111.54
B) 100
C) 102.31
D) 123.07
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighted average for January 13th.

A) 32
B) 30
C) 36.13
D) 34
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighted average for January 14th.

A) 32
B) 30
C) 36.13
D) 34
E) None of the above
Question
Exhibit 5.1
Use the Information Below for the Following Problem(S)
                    
 Number of shares Glasing Prices (per share)\begin{array}{c}\begin{array}{lll}\text { Number of shares}\end{array}\begin{array}{lll}\text { Glasing Prices}\end{array}\begin{array}{lll}\text { (per share)} \end{array}\end{array}

 Companies  outstanding  Day T  Day T + 1 12,000$30.00$25.0027,00055.0060.0035,00020.0025.0044.00040.0045.00\begin{array}{cccc}\text { Companies } & \text { outstanding } & \text { Day T } & \text { Day T + 1 } \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4.000 & 40.00 & 45.00\end{array}


-Refer to Exhibit 5.1.Assume that a stock price-weighted indicator consisted of the four issues with their prices.What are the values of the stock indicator for Day T and T + 1 and what is the percentage change?

A) 36.25, 38.75, 6.9%
B) 38.75, 36.25, -6.9%
C) 100, 106.9, 6.9%
D) 107.48, 106.33, 1.15%
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for January 16th if the initial index value is 100.

A) 123.07
B) 100.00
C) 102.31
D) 111.54
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.What is the divisor at the beginning of January 16th?

A) 1.9375
B) 3.0
C) 2.5
D) 2.2734
E) None of the above
Question
The following are examples of Style Indexes

A) Small-cap growth
B) Mid-cap value
C) Small-cap value
D) All of the above
E) None of the above
Question
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighed average for January 15th.

A) 30
B) 36.13
C) 32
D) 34
E) None of the above
Question
Exhibit 5.4
Use the Information Below for the Following Problem(S)
 Year  % Price Chinge for stark Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Chinge for stark Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4.Calculate the average annual rate of change for this index for the 5 year period using the geometric mean.

A) 0.09%
B) 1.99%
C) 3.99%
D) 4.50%
E) 4.67%
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the price weighted series for Dec 31,2004.

A) 121.25
B) 119.25
C) 100.0
D) 72.5
E) 81.69
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the percentage return in the unweighted index (geometric mean)for the period Dec 31,2003 to Dec 31,2004.Assume a base index value of 100.Base year is Dec 31,2003.

A) 19.25%
B) 21.25%
C) 51.25%
D) 5.25%
E) 100.25%
Question
Exhibit 5.3
Use the Information Below for the Following Problem(S)
Y ear % Price Change for CE Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } Y \text { ear } & \% \text { Price Change for CE Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3.Calculate the average annual rate of change for GB Industries for the 5 year period using the geometric mean.

A) 9.7800%
B) 0.0978%
C) 9.0700%
D) 0.0970%
E) 3.6400%
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the price weighted series for Dec 31,2003,prior to the splits.

A) 81.69
B) 100.0
C) 72.5
D) 121.25
E) 119.25
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the percentage return in the value weighted index for the period Dec 31,2003 to Dec 31,2004.

A) 12.68%
B) 20.00%
C) 21.76%
D) 33.33%
E) 40.00%
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the unweighted index for Dec 31,2003,prior to the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 100.0
B) 200.0
C) 150.0
D) 120.0
E) 175.0
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the percentage return in the price weighted series for the period Dec 31,2000 to Dec 31,2004.

A) 12.68%
B) 20.00%
C) 21.76%
D) 33.33%
E) 40.00%
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the unweighted index (geometric mean)for Dec 31,2004.Assume a base index value of 100.The base year is Dec 31,2003.

A) 119.25
B) 121.25
C) 151.25
D) 95.25
E) 100.25
Question
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.Compute the arithmetic mean of the price change of Stocks Q,R,and S from days T to T + 1.

A) 8.65%
B) 10.14%
C) 15.69%
D) 30.42%
E) 47.08%
Question
Exhibit 5.3
Use the Information Below for the Following Problem(S)
Y ear % Price Change for CE Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } Y \text { ear } & \% \text { Price Change for CE Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3.Calculate the average annual rate of change for GB Industries for the 5 year period using the arithmetic mean.

A) 0.098%
B) 9.80%
C) 8.50%
D) 8.00%
E) 89.00%
Question
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.If an equal-weighted index is constructed on Day T with $10,000 in each stock,what is the percentage change in wealth for this index on Day T + 1? Assume a base index value of 100 on Day T.

A) 8.65%
B) 10.14%
C) 15.69%
D) 30.42%
E) 47.08%
Question
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.Calculate a value weighted average for Day T + 1.Assume a base index value of 100 on Day T.

A) 46.20
B) 53.33
C) 54.12
D) 92.39
E) 108.23
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the price weighted series for Dec 31,2003,after the splits.

A) 72.5
B) 100.0
C) 119.25
D) 121.25
E) 81.69
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the value weighted index for Dec 31,2003,after the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 72.5
B) 81.69
C) 100.0
D) 120.0
E) 121.25
Question
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.Calculate a price weighted average for Day T.

A) 46.20
B) 53.33
C) 54.12
D) 92.39
E) 108.23
Question
Exhibit 5.4
Use the Information Below for the Following Problem(S)
 Year  % Price Chinge for stark Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Chinge for stark Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4.Calculate the average annual rate of change for this index for the 5 year period using the arithmetic mean.

A) 0.28%
B) 1.28%
C) 2.80%
D) 3.58%
E) 6.38%
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the value weighted index for Dec 31,2004.Assume a base index value of 100.The base year is Dec 31,2003.

A) 121.25
B) 100.0
C) 81.69
D) 72.5
E) 120.0
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the unweighted index for Dec 31,2003,after the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 110.0
B) 200.0
C) 100.0
D) 120.0
E) 150.0
Question
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the value weighted index for Dec 31,2003,prior to the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 120.0
B) 81.69
C) 72.5
D) 100.0
E) 121.25
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/84
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Security-Market Indexes
1
There is a high correlation between the Wilshire 5000 index and the alternative NYSE series (S&P 500 and the NYSE),representing the substantial influence of large NYSE stocks on the Wilshire 5000 index.
True
2
The Dow Jones Industrial Average is a value weighted average.
False
3
A value weighted index automatically adjusts for stock splits.
True
4
There are no composite series currently available that will measure the performance of all securities (i.e.stocks and bonds)in a given country.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
5
The correlations among the U.S.investment-grade-bond series were very high because all rates of return for investment-grade bonds over time are impacted by common macroeconomic variables.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
6
To solve comparability problems across countries,global equity indexes with consistent sample selection,weighting and computational procedure have been developed.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
7
A two for one stock split causes the divisor in a price-weighted series to decline.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
8
A price weighted series is disproportionately influenced by larger capitalization companies.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
9
An equally weighted indicator series is also known as an unweighted indicator series.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
10
Bond-market indicator series have been around much longer than stock-market indicator series.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
11
The general purpose of a market indicator series is to provide an overall indication of aggregate market changes or movements.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
12
A bond market index is easier to create than a stock market index because the universe of bonds is much broader than that of stocks.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
13
Unlike the Dow Jones Industrial Average,the Nikkei-Dow Jones Average is price weighted.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
14
The low correlations between the U.S.and Japan confirm the benefit of global diversification.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
15
The NYSE series should have higher rates of return and risk measures than the AMEX and OTC series.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
16
It is easier to construct an indicator series for bonds because of their relatively stable returns pattern.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
17
The New York Stock Exchange Index is based on a sample of all of the New York Stock Exchange stocks.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
18
The major U.S.stock indexes are highly correlated.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
19
The Dow Jones Industrial Average has been criticized for being blue-chip biased.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
20
An aggregate market index can be used as a benchmark to judge the performance of professional money managers.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
21
The Standard & Poor's 500 index is an example of a value weighted index.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
22
In a value weighted index

A) Exchange rate fluctuations have a large impact.
B) Exchange rate fluctuations have a small impact.
C) Large companies have a disproportionate influence on the index.
D) Small companies have an exaggerated effect on the index.
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
23
Which of the following is true of the various market index series?

A) A low correlation exists between the U.S. indexes and those of Japan.
B) The NYSE series have higher rates of return and risk measures than the AMEX and OTC series.
C) A low correlation exists between alternative series that include almost all NYSE stocks.
D) A low correlation exists between alternative bond series.
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
24
The most common way to test a portfolio manager's performance is to compare the portfolio return to a benchmark.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
25
What effect does a stock substitution or stock split have on a price-weighted series?

A) Index remains the same, divisor will increase/decrease.
B) Divisor remains the same, index will increase/decrease.
C) Index and divisor will both remain the same.
D) Index and divisor will both reflect the changes (immediately).
E) Not enough information is provided.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
26
Which of the following are factors that make it difficult to create and maintain a bond index?

A) The universe of bonds is broader than stocks.
B) The universe of bonds is constantly changing due to new issues, bond maturities, calls, and bond sinking funds.
C) It is difficult to derive value, up-to-date prices.
D) Choices a and c
E) All of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
27
The Value Line Composite Average is calculated using the ____ of percentage price changes.

A) arithmetic average
B) harmonic average
C) expected value
D) geometric average
E) logarithmic average
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
28
In a price weighted average stock market indicator series,the following type of stock has the greatest influence

A) The stock with the highest price
B) The stock with the lowest price
C) The stock with the highest market capitalization
D) The stock with the lowest market capitalization
E) The stock with the highest P/E ratio
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
29
The Morgan Stanley group index for Europe,Australia,and the Far East (EAFE)is a price weighted index.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
30
Which of the following is not a global equity indicator series?

A) Morgan Stanley Capital International Indexes
B) Dow Jones World Stock Index
C) FT/S & P-Actuaries World Indexes
D) Merrill Lynch-Wilshire World Indexes
E) None of the above (that is, each is a global equity indicator series)
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
31
Which of the following is not a use of security market indicator series?

A) To use as a benchmark of individual portfolio performance
B) To develop an index portfolio
C) To determine factors influencing aggregate security price movements
D) To use in the measurement of systematic risk
E) To use in the measurement of diversifiable risk
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
32
Which of the following is not a U.S.investment-grade bond index?

A) Merrill Lynch
B) Ryan Treasury
C) Salomon Brothers
D) Lehman Brothers
E) None of the above (that is, all are U.S. investment-grade bond indexes)
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
33
The Standard & Poor's International Index consists of 3 international,19 national,and 38 international industry indexes.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
34
A properly selected sample for use in constructing a market indicator series will consider the sample's source,size and

A) Breadth.
B) Average beta.
C) Value.
D) Variability.
E) Dividend record.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
35
An example of a value weighted stock market indicator series is the

A) Dow Jones Industrial Average.
B) Nikkei Dow Jones Average.
C) S & P 500 Index.
D) Value Line Index.
E) Shearson Lehman Hutton Index.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
36
The Ryan Treasury Index is an example of a

A) Bond market indicator series.
B) Stock market indicator series.
C) Composite security market series.
D) World market series.
E) Commodity market series.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
37
A price-weighted index such as the DJIA is a geometric mean of current stock prices.
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
38
Which of the following is not a value-weighted series?

A) NASDAQ Industrial Index
B) Dow Jones Industrial Average
C) Wilshire 5000 Equity Index
D) American Stock Exchange Series
E) NASDAQ Composite Index
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
39
Of the following indices,which includes the most comprehensive list of stocks?

A) New York Exchange Index
B) Standard and Poor's Index
C) American Stock Exchange Index
D) NASDAQ Series Index
E) Wilshire Equity Index
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
40
Studies of correlations among monthly equity price index returns have found:

A) Low correlations between various U.S. equity indexes
B) High correlations between various U.S. equity indexes
C) High correlations between U.S. and non-U.S. equity indexes
D) Negative correlations between various U.S. equity indexes
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
41
Exhibit 5.1
Use the Information Below for the Following Problem(S)
                    
 Number of shares Glasing Prices (per share)\begin{array}{c}\begin{array}{lll}\text { Number of shares}\end{array}\begin{array}{lll}\text { Glasing Prices}\end{array}\begin{array}{lll}\text { (per share)} \end{array}\end{array}

 Companies  outstanding  Day T  Day T + 1 12,000$30.00$25.0027,00055.0060.0035,00020.0025.0044.00040.0045.00\begin{array}{cccc}\text { Companies } & \text { outstanding } & \text { Day T } & \text { Day T + 1 } \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4.000 & 40.00 & 45.00\end{array}


-Refer to Exhibit 5.1.For a value-weighted series,assume that Day T is the base period and the base value is 100.What is the new index value for Day T + 1 and what is the percentage change in the index from Day T?

A) 106.33, 6.33%
B) 107.48, 7.48%
C) 109.93, 9.93%
D) 108.7, 8.7%
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
42
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.What is the divisor at the beginning of January 14th?

A) 3.0
B) 2.5
C) 2.2734
D) 1.9375
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
43
Index movements are influenced by differential prices of the components in a(n)

A) Equally-weighted index.
B) Price-weighted index.
C) Unweighted index.
D) Value-weighted index.
E) All of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
44
A style index created to track ethical funds is known as:

A) Green index
B) SRI index
C) EAFE index
D) Freedom index
E) Ethical index
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
45
Studies of correlations among monthly U.S.bond price index returns have found:

A) Low correlations between investment grade bonds and high yield bonds
B) High correlations between investment grade bonds and high yield bonds
C) Low correlations between various investment grade bond indexes
D) Negative correlations between investment grade bonds and high yield bonds
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
46
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for Jan.14th if the initial index value is 100.

A) 100
B) 102.31
C) 123.07
D) 111.54
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
47
Which index is created by first deriving the initial total market value of all stocks used in the index?

A) Equally-weighted index.
B) Price-weighted index.
C) Unweighted index.
D) Value-weighted index.
E) All of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
48
Which of the fundamental factors was not used in the Fundamental Index created by Research Affiliates,Inc.?

A) Sales
B) Profits (cash flow)
C) Leverage (debt/equity)
D) Net assets (book value)
E) Dividends
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
49
Exhibit 5.1
Use the Information Below for the Following Problem(S)
                    
 Number of shares Glasing Prices (per share)\begin{array}{c}\begin{array}{lll}\text { Number of shares}\end{array}\begin{array}{lll}\text { Glasing Prices}\end{array}\begin{array}{lll}\text { (per share)} \end{array}\end{array}

 Companies  outstanding  Day T  Day T + 1 12,000$30.00$25.0027,00055.0060.0035,00020.0025.0044.00040.0045.00\begin{array}{cccc}\text { Companies } & \text { outstanding } & \text { Day T } & \text { Day T + 1 } \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4.000 & 40.00 & 45.00\end{array}


-Refer to Exhibit 5.1.Compute an unweighted price indicator series,using geometric means.What is the percentage change in the index from Day T to Day T+1? Assume a base index value of 100 on Day T.

A) 5.35%
B) 7.48%
C) 9.93%
D) 6.33%
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
50
The actual index movements are typically based on the arithmetic mean of the percent changes in price or value for the stocks in the

A) Price-weighted index.
B) Unweighted index.
C) Value-weighted index.
D) All of the above
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
51
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for January 15th if the initial index value is 100.

A) 102.31
B) 100
C) 123.07
D) 111.54
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
52
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighted average for January 16th.

A) 30
B) 32
C) 34
D) 36.13
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
53
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for Jan.13th if the initial index value is 100.

A) 111.54
B) 100
C) 102.31
D) 123.07
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
54
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighted average for January 13th.

A) 32
B) 30
C) 36.13
D) 34
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
55
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighted average for January 14th.

A) 32
B) 30
C) 36.13
D) 34
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
56
Exhibit 5.1
Use the Information Below for the Following Problem(S)
                    
 Number of shares Glasing Prices (per share)\begin{array}{c}\begin{array}{lll}\text { Number of shares}\end{array}\begin{array}{lll}\text { Glasing Prices}\end{array}\begin{array}{lll}\text { (per share)} \end{array}\end{array}

 Companies  outstanding  Day T  Day T + 1 12,000$30.00$25.0027,00055.0060.0035,00020.0025.0044.00040.0045.00\begin{array}{cccc}\text { Companies } & \text { outstanding } & \text { Day T } & \text { Day T + 1 } \\\hline 1 & 2,000 & \$ 30.00 & \$ 25.00 \\2 & 7,000 & 55.00 & 60.00 \\3 & 5,000 & 20.00 & 25.00 \\4 & 4.000 & 40.00 & 45.00\end{array}


-Refer to Exhibit 5.1.Assume that a stock price-weighted indicator consisted of the four issues with their prices.What are the values of the stock indicator for Day T and T + 1 and what is the percentage change?

A) 36.25, 38.75, 6.9%
B) 38.75, 36.25, -6.9%
C) 100, 106.9, 6.9%
D) 107.48, 106.33, 1.15%
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
57
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a value weighted index for January 16th if the initial index value is 100.

A) 123.07
B) 100.00
C) 102.31
D) 111.54
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
58
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.What is the divisor at the beginning of January 16th?

A) 1.9375
B) 3.0
C) 2.5
D) 2.2734
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
59
The following are examples of Style Indexes

A) Small-cap growth
B) Mid-cap value
C) Small-cap value
D) All of the above
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
60
Exhibit 5.2
Use the Information Below for the Following Problem(S)
  Stock Price  # Shares XYZXYZ Jan. 13,2005204030100020001000 Jan. 14,2005254218100020002000 Jan. 15,200527458100020002000 Jan. 16,2005204010300020002000\begin{array}{lcccccc} ~&&\text { Stock Price } &&& \text { \# Shares } \\ & \mathbf{X} & \mathbf{Y} & \mathbf{Z} & \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \text { Jan. } 13,2005 & 20 & 40 & 30 & 1000 & 2000 & 1000^{*} \\\text { Jan. } 14,2005 & 25 & 42 & 18 & 1000 & 2000 & 2000 \\\text { Jan. } 15,2005 & 27 & 45 & 8 & 1000^{* *} & 2000 & 2000 \\\text { Jan. } 16,2005 & 20 & 40 & 10 & 3000 & 2000 & 2000\end{array}
*2:1 Split on Stock Z after Close on Jan. 13, 2005
**3:1 Split on Stock X after Close on Jan. 15, 2005
The base date for index calculations is January 13, 2005

-Refer to Exhibit 5.2.Calculate a price weighed average for January 15th.

A) 30
B) 36.13
C) 32
D) 34
E) None of the above
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
61
Exhibit 5.4
Use the Information Below for the Following Problem(S)
 Year  % Price Chinge for stark Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Chinge for stark Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4.Calculate the average annual rate of change for this index for the 5 year period using the geometric mean.

A) 0.09%
B) 1.99%
C) 3.99%
D) 4.50%
E) 4.67%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
62
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the price weighted series for Dec 31,2004.

A) 121.25
B) 119.25
C) 100.0
D) 72.5
E) 81.69
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
63
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the percentage return in the unweighted index (geometric mean)for the period Dec 31,2003 to Dec 31,2004.Assume a base index value of 100.Base year is Dec 31,2003.

A) 19.25%
B) 21.25%
C) 51.25%
D) 5.25%
E) 100.25%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
64
Exhibit 5.3
Use the Information Below for the Following Problem(S)
Y ear % Price Change for CE Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } Y \text { ear } & \% \text { Price Change for CE Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3.Calculate the average annual rate of change for GB Industries for the 5 year period using the geometric mean.

A) 9.7800%
B) 0.0978%
C) 9.0700%
D) 0.0970%
E) 3.6400%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
65
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the price weighted series for Dec 31,2003,prior to the splits.

A) 81.69
B) 100.0
C) 72.5
D) 121.25
E) 119.25
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
66
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the percentage return in the value weighted index for the period Dec 31,2003 to Dec 31,2004.

A) 12.68%
B) 20.00%
C) 21.76%
D) 33.33%
E) 40.00%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
67
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the unweighted index for Dec 31,2003,prior to the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 100.0
B) 200.0
C) 150.0
D) 120.0
E) 175.0
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
68
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the percentage return in the price weighted series for the period Dec 31,2000 to Dec 31,2004.

A) 12.68%
B) 20.00%
C) 21.76%
D) 33.33%
E) 40.00%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
69
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the unweighted index (geometric mean)for Dec 31,2004.Assume a base index value of 100.The base year is Dec 31,2003.

A) 119.25
B) 121.25
C) 151.25
D) 95.25
E) 100.25
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
70
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.Compute the arithmetic mean of the price change of Stocks Q,R,and S from days T to T + 1.

A) 8.65%
B) 10.14%
C) 15.69%
D) 30.42%
E) 47.08%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
71
Exhibit 5.3
Use the Information Below for the Following Problem(S)
Y ear % Price Change for CE Industries 200010.0%200112.0%200210.0%200311.0%20046.0%\begin{array} { c c } Y \text { ear } & \% \text { Price Change for CE Industries } \\\hline 2000 & 10.0 \% \\2001 & 12.0 \% \\2002 & 10.0 \% \\2003 & 11.0 \% \\2004 & 6.0 \%\end{array}

-Refer to Exhibit 5.3.Calculate the average annual rate of change for GB Industries for the 5 year period using the arithmetic mean.

A) 0.098%
B) 9.80%
C) 8.50%
D) 8.00%
E) 89.00%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
72
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.If an equal-weighted index is constructed on Day T with $10,000 in each stock,what is the percentage change in wealth for this index on Day T + 1? Assume a base index value of 100 on Day T.

A) 8.65%
B) 10.14%
C) 15.69%
D) 30.42%
E) 47.08%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
73
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.Calculate a value weighted average for Day T + 1.Assume a base index value of 100 on Day T.

A) 46.20
B) 53.33
C) 54.12
D) 92.39
E) 108.23
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
74
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the price weighted series for Dec 31,2003,after the splits.

A) 72.5
B) 100.0
C) 119.25
D) 121.25
E) 81.69
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
75
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the value weighted index for Dec 31,2003,after the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 72.5
B) 81.69
C) 100.0
D) 120.0
E) 121.25
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
76
Exhibit 5.6
Use the Information Below for the Following Problem(S)
                                                                                                           Price
 Stack  Number of Shares  Day T  D.y T + 1 Q5,000,0008095R8,000,0006055 S 15,000,0002024\begin{array} { c c c c } \text { Stack } & \text { Number of Shares } & \text { Day T } & \text { D.y T + 1 } \\\hline Q & 5,000,000 & 80 & 95 \\R & 8,000,000 & 60 & 55 \\\text { S } & 15,000,000 & 20 & 24\end{array}

-Refer to Exhibit 5.6.Calculate a price weighted average for Day T.

A) 46.20
B) 53.33
C) 54.12
D) 92.39
E) 108.23
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
77
Exhibit 5.4
Use the Information Below for the Following Problem(S)
 Year  % Price Chinge for stark Index 20008.0%200110.0%200214.0%200320.0%200410.0%\begin{array} { c c } \text { Year } & \text { \% Price Chinge for stark Index } \\\hline 2000 & 8.0 \% \\2001 & 10.0 \% \\2002 & - 14.0 \% \\2003 & 20.0 \% \\2004 & - 10.0 \%\end{array}

-Refer to Exhibit 5.4.Calculate the average annual rate of change for this index for the 5 year period using the arithmetic mean.

A) 0.28%
B) 1.28%
C) 2.80%
D) 3.58%
E) 6.38%
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
78
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the value weighted index for Dec 31,2004.Assume a base index value of 100.The base year is Dec 31,2003.

A) 121.25
B) 100.0
C) 81.69
D) 72.5
E) 120.0
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
79
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the unweighted index for Dec 31,2003,after the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 110.0
B) 200.0
C) 100.0
D) 120.0
E) 150.0
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
80
Exhibit 5.5
Use the Information Below for the Following Problem(S)
 Stack  31-Dec-03  Price  31-Dec-03  Shares  31-Dec-04  Price  S1-Dec-04  Shares W$75.0010000$50.0020000X$150.005000$65.0010000Y$250020000$35.0020000Z$20.0025000$50.0025000\begin{array} { c c c c c } \text { Stack } & \begin{array} { c } \text { 31-Dec-03 } \\\text { Price }\end{array} & \begin{array} { c } \text { 31-Dec-03 } \\\text { Shares }\end{array} & \begin{array} { c } \text { 31-Dec-04 } \\\text { Price }\end{array} & \begin{array} { c } \text { S1-Dec-04 } \\\text { Shares }\end{array} \\\hline W & \$ 75.00 & 10000 & \$ 50.00 & 20000 \\X & \$ 150.00 & 5000 & \$ 65.00 & 10000 \\Y & \$ 2500 & 20000 & \$ 35.00 & 20000 \\Z & \$ 20.00 & 25000 & \$ 50.00 & 25000\end{array}
Stocks W and X had 2 for 1 splits after the close on Dec 31, 2003.

-Refer to Exhibit 5.5.Calculate the value weighted index for Dec 31,2003,prior to the splits.Assume a base index value of 100.The base year is Dec 31,2003.

A) 120.0
B) 81.69
C) 72.5
D) 100.0
E) 121.25
Unlock Deck
Unlock for access to all 84 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 84 flashcards in this deck.