Deck 7: The Trigonometric Functions

Full screen (f)
exit full mode
Question
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the given angle: 3π2\frac { 3 \pi } { 2 }

A) cos3π2=0\cos \frac { 3 \pi } { 2 } = 0 , sin3π2=1\sin \frac { 3 \pi } { 2 } = - 1 , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
B) cos3π2=1\cos \frac { 3 \pi } { 2 } = - 1 , sin3π2=1\sin \frac { 3 \pi } { 2 } = 1 , tan3π2=0\tan \frac { 3 \pi } { 2 } = 0 , sec3π2=1\sec \frac { 3 \pi } { 2 } = - 1 , cot3π2\cot \frac { 3 \pi } { 2 } is undefined, csc3π2\csc \frac { 3 \pi } { 2 } is undefined.
C) cos3π2=1\cos \frac { 3 \pi } { 2 } = 1 , sin3π2=1\sin \frac { 3 \pi } { 2 } = 1 , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
D) cos3π2=12\cos \frac { 3 \pi } { 2 } = - \frac { 1 } { 2 } , sin3π2=32\sin \frac { 3 \pi } { 2 } = \frac { \sqrt { 3 } } { 2 } , tan3π2=0\tan \frac { 3 \pi } { 2 } = 0 , sec3π2=1\sec \frac { 3 \pi } { 2 } = - 1 , cot3π2\cot \frac { 3 \pi } { 2 } is undefined, csc3π2\csc \frac { 3 \pi } { 2 } is undefined.
E) cos3π2=12\cos \frac { 3 \pi } { 2 } = - \frac { 1 } { 2 } , sin3π2=32\sin \frac { 3 \pi } { 2 } = \frac { \sqrt { 3 } } { 2 } , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
Use Space or
up arrow
down arrow
to flip the card.
Question
Rewrite in terms of sine and cosine, and simplify the expression: 3sinθ+6sin2θ4\frac { 3 \sin \theta + 6 } { \sin ^ { 2 } \theta - 4 }

A) sinθ+24\frac { \sin \theta + 2 } { 4 }
B) sinθ23\frac { \sin \theta - 2 } { 3 }
C) 6sinθ+2\frac { 6 } { \sin \theta + 2 }
D) 3sinθ2\frac { 3 } { \sin \theta - 2 }
E) sinθ+26\frac { \sin \theta + 2 } { 6 }
Question
Rewrite in terms of sine and cosine, and simplify the expression: secAcscAtanAcotA\sec A \csc A - \tan A - \cot A

A) secA\sec A
B) 00
C) cotA\cot A
D) 11
E) tanA\tan A
Question
Use the definition θ=sr\theta = \frac { s } { r } to determine the radian measure of the angle.  <strong>Use the definition  \theta = \frac { s } { r }  to determine the radian measure of the angle.  </strong> A)  \theta = 4.05  radians B)  \theta = 3  radians C)  \theta = 3.08  radians D)  \theta  radians E)  \theta = 3.15  radians <div style=padding-top: 35px>

A) θ=4.05\theta = 4.05 radians
B) θ=3\theta = 3 radians
C) θ=3.08\theta = 3.08 radians
D) θ\theta radians
E) θ=3.15\theta = 3.15 radians
Question
Use the definition θ=sr\theta = \frac { s } { r } to determine the radian measure of the angle in the figure below.  <strong>Use the definition  \theta = \frac { s } { r }  to determine the radian measure of the angle in the figure below.  </strong> A)  \theta = 0.2  radians B)  \theta = 0.4  radians C)  \theta = 1.25  radians D)  \theta = 0.83  radians E)  \theta = 0.13  radians <div style=padding-top: 35px>

A) θ=0.2\theta = 0.2 radians
B) θ=0.4\theta = 0.4 radians
C) θ=1.25\theta = 1.25 radians
D) θ=0.83\theta = 0.83 radians
E) θ=0.13\theta = 0.13 radians
Question
Evaluate the expressions using reference angles. sec(7π4)\sec \left( \frac { 7 \pi } { 4 } \right) tan(7π4)\tan \left( \frac { 7 \pi } { 4 } \right)

A) sec(7π4)=3\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 3 } tan(7π4)=2\tan \left( \frac { 7 \pi } { 4 } \right) = 2
B) sec(7π4)=2\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 2 } tan(7π4)=1\tan \left( \frac { 7 \pi } { 4 } \right) = - 1
C) sec(7π4)=2\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 2 } tan(7π4)=12\tan \left( \frac { 7 \pi } { 4 } \right) = - \frac { 1 } { 2 }
D) sec(7π4)=22\sec \left( \frac { 7 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } tan(7π4)=4\tan \left( \frac { 7 \pi } { 4 } \right) = - 4
E) sec(7π4)=5\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 5 } tan(7π4)=1\tan \left( \frac { 7 \pi } { 4 } \right) = - 1
Question
Let P(x,y)P ( x , y ) denote the point where the terminal side of angle θ\theta (in standard position) meets the unit circle. Use the information to evaluate the six trigonometric functions of θ\theta . PP is in Quadrant IV and y=34y = - \frac { 3 } { 4 } .

A) sinθ=74\sin \theta = - \frac { \sqrt { 7 } } { 4 } , cosθ=34\cos \theta = \frac { 3 } { 4 } , tanθ=73\tan \theta = - \frac { \sqrt { 7 } } { 3 } , secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=477\csc \theta = \frac { 4 \sqrt { 7 } } { 7 } , cotθ=377\cot \theta = \frac { 3 \sqrt { 7 } } { 7 }
B) sinθ=74\sin \theta = - \frac { \sqrt { 7 } } { 4 } , cosθ=34\cos \theta = \frac { 3 } { 4 } , tanθ=73\tan \theta = \frac { \sqrt { 7 } } { 3 } , secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=477\csc \theta = - \frac { 4 \sqrt { 7 } } { 7 } , cotθ=377\cot \theta = \frac { 3 \sqrt { 7 } } { 7 }
C) sinθ=34\sin \theta = - \frac { 3 } { 4 } , cosθ=74\cos \theta = \frac { \sqrt { 7 } } { 4 } , tanθ=377\tan \theta = - \frac { 3 \sqrt { 7 } } { 7 } , secθ=477\sec \theta = \frac { 4 \sqrt { 7 } } { 7 } , cscθ=43\csc \theta = - \frac { 4 } { 3 } , cotθ=73\cot \theta = - \frac { \sqrt { 7 } } { 3 }
D) sinθ=74cosθ=34tanθ=73\sin \theta = \frac { \sqrt { 7 } } { 4 } \quad \cos \theta = - \frac { 3 } { 4 } \quad \tan \theta = - \frac { \sqrt { 7 } } { 3 } secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=77\csc \theta = \frac { \sqrt { 7 } } { 7 } , cotθ=77\cot \theta = - \frac { \sqrt { 7 } } { 7 }
E) sinθ=34\sin \theta = \frac { 3 } { 4 } , cosθ=74\cos \theta = - \frac { \sqrt { 7 } } { 4 } , tanθ=377\tan \theta = \frac { 3 \sqrt { 7 } } { 7 } , secθ=477\sec \theta = - \frac { 4 \sqrt { 7 } } { 7 } , cscθ=43\csc \theta = \frac { 4 } { 3 } , cotθ=73\cot \theta = \frac { \sqrt { 7 } } { 3 }
Question
Refer to the figure, which shows all of the angles from 00 ^ { \circ } to 360360 ^ { \circ } that are multiples of 3030 ^ { \circ } or 4545 ^ { \circ } .  <strong>Refer to the figure, which shows all of the angles from  0 ^ { \circ }  to  360 ^ { \circ }  that are multiples of  30 ^ { \circ }  or  45 ^ { \circ }  .   Relabel the angles in Quadrant III and IV using radian measure.</strong> A)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\ \hline \end{array}  B)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 9 \pi } { 4 } & \frac { 7 \pi } { 4 } & \frac { 5 \pi } { 6 } & \frac { 10 \pi } { 3 } & \frac { 11 \pi } { 4 } & \frac { 11 \pi } { 6 } \\ \hline \end{array}  C)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\ \hline \end{array}  D)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\ \hline \end{array}  E)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\ \hline \end{array}  <div style=padding-top: 35px>  Relabel the angles in Quadrant III and IV using radian measure.

A) 2102252403003153303π42π54π7π42π35π2\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\\hline\end{array}
B) 2102252403003153309π47π45π610π311π411π6\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 9 \pi } { 4 } & \frac { 7 \pi } { 4 } & \frac { 5 \pi } { 6 } & \frac { 10 \pi } { 3 } & \frac { 11 \pi } { 4 } & \frac { 11 \pi } { 6 } \\\hline\end{array}
C) 2102252403003153307π6π3π52π33π73π2\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\\hline\end{array}
D) 210225240300315330π6π4π32π33π45π6\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\\hline\end{array}
E) 2102252403003153307π65π44π35π37π411π6\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\\hline\end{array}
Question
Factor the expression. 3sec2β+8secβ163 \sec ^ { 2 } \beta + 8 \sec \beta - 16

A) (3secβ3)(secβ+5)( 3 \sec \beta - 3 ) ( \sec \beta + 5 )
B) (3secβ7)(secβ+4)( 3 \sec \beta - 7 ) ( \sec \beta + 4 )
C) (3secβ7)(secβ+3)( 3 \sec \beta - 7 ) ( \sec \beta + 3 )
D) (3secβ5)(secβ+6)( 3 \sec \beta - 5 ) ( \sec \beta + 6 )
E) (3secβ4)(secβ+4)( 3 \sec \beta - 4 ) ( \sec \beta + 4 )
Question
Factor the expression. tan2β+6tanβ7\tan ^ { 2 } \beta + 6 \tan \beta - 7

A) (tanβ3)(tanβ+5)( \tan \beta - 3 ) ( \tan \beta + 5 )
B) (tanβ1)(tanβ+7)( \tan \beta - 1 ) ( \tan \beta + 7 )
C) (tanβ1)(tanβ+6)( \tan \beta - 1 ) ( \tan \beta + 6 )
D) (tanβ4)(tanβ+4)( \tan \beta - 4 ) ( \tan \beta + 4 )
E) (tanβ5)(tanβ+4)( \tan \beta - 5 ) ( \tan \beta + 4 )
Question
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the given angle: 360- 360 ^ { \circ }

A) sin(360)=0\sin \left( - 360 ^ { \circ } \right) = 0 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = 1 , tan(360)=0\tan \left( - 360 ^ { \circ } \right) = 0 , sec(360)=1\sec \left( - 360 ^ { \circ } \right) = 1 , csc(360)\csc \left( - 360 ^ { \circ } \right) is undefined, cot(360)\cot \left( - 360 ^ { \circ } \right) is undefined.
B) sin(360)=0\sin \left( - 360 ^ { \circ } \right) = 0 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = 1 , tan(360)\tan \left( - 360 ^ { \circ } \right) is undefined, sec(360)\sec \left( - 360 ^ { \circ } \right) is undefined. csc(360)=0\csc \left( - 360 ^ { \circ } \right) = 0 , cot(360)=1\cot \left( - 360 ^ { \circ } \right) = 1 .
C) sin(360)=0\sin \left( - 360 ^ { \circ } \right) = 0 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = - 1 , tan(360)=0\tan \left( - 360 ^ { \circ } \right) = 0 , sec(360)=1\sec \left( - 360 ^ { \circ } \right) = - 1 , csc(360)\csc \left( - 360 ^ { \circ } \right) is undefined, cot(360)\cot \left( - 360 ^ { \circ } \right) is undefined.
D) sin(360)=1\sin \left( - 360 ^ { \circ } \right) = 1 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = 1 , tan(360)\tan \left( - 360 ^ { \circ } \right) is undefined, sec(360)\sec \left( - 360 ^ { \circ } \right) is undefined. csc(360)=0\csc \left( - 360 ^ { \circ } \right) = 0 , cot(360)=0\cot \left( - 360 ^ { \circ } \right) = 0 .
E) sin(360)=1\sin \left( - 360 ^ { \circ } \right) = 1 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = - 1 , tan(360)=1\tan \left( - 360 ^ { \circ } \right) = 1 , sec(360)=1\sec \left( - 360 ^ { \circ } \right) = - 1 , csc(360)\csc \left( - 360 ^ { \circ } \right) is undefined, cot(360)\cot \left( - 360 ^ { \circ } \right) is undefined.
Question
You are given the rate of rotation of a wheel as well as its radius. Determine the following: (a) the angular speed, in units of radians/sec; (b) the linear speed, in units of cm/sec, of a point on the circumference of the wheel; (c) and the linear speed, in cm/sec, of a point halfway between the center of the wheel and the circumference. 520520 rpm; r=45r = 45 cm

A) (a) 156 π\pi radian/sec,
(b) 780 π\pi cm/sec,
(c) 390 π\pi cm/sec
B) (a) 166 π radian/sec166 ~\pi ~\mathrm { radian } / \mathrm { sec }
(b) 1,278 π\pi cm/sec,
(c) 400 π\pi cm/sec
C) (a) 52π11\frac { 52 \pi } { 11 } radian/sec,
(b) 1,248 π\pi cm/sec,
(c) 624 π\pi cm/sec
D) (a) 520 π\pi radian/sec,
(b) 780 π\pi cm/sec,
(c) 1,560 π\pi cm/sec
E) (a) 52π3\frac { 52 \pi } { 3 } radian/sec,
(b) 780 π\pi cm/sec,
(c) 390 π\pi cm/sec
Question
Use a calculator to evaluate secθ\sec \theta , cscθ\csc \theta , and cotθ\cot \theta for the value of θ\theta . Round the answers to two decimal places. θ=27\theta = 27 ^ { \circ }

A) secθ=1.12\sec \theta = 1.12 cscθ=2.20\csc \theta = 2.20 cotθ=1.96\cot \theta = 1.96
B) secθ=1.32\sec \theta = 1.32 cscθ=1.87\csc \theta = 1.87 cotθ=1.67\cot \theta = 1.67
C) secθ=1.60\sec \theta = 1.60 cscθ=3.15\csc \theta = 3.15 cotθ=1.37\cot \theta = 1.37
D) secθ=1.12\sec \theta = 1.12 cscθ=3.15\csc \theta = 3.15 cotθ=1.67\cot \theta = 1.67
E) secθ=1.32\sec \theta = 1.32 cscθ=2.20\csc \theta = 2.20 cotθ=1.37\cot \theta = 1.37
Question
Refer to the figure, which indicates radian measure on the unit circle for angles in standard position. Use the figure (and the unit circle definitions) to determine whether sin6,cos6\sin 6 , \cos 6 and tan6\tan 6 are positive or negative.  <strong>Refer to the figure, which indicates radian measure on the unit circle for angles in standard position. Use the figure (and the unit circle definitions) to determine whether  \sin 6 , \cos 6  and  \tan 6  are positive or negative.  </strong> A)  \sin 6  is positive,  \cos 6  is positive,  \tan 6  is negative B)  \sin 6  is negative,  \cos 6  is positive,  \tan 6  is negative C)  \sin 6  is positive,  \cos 6  is positive,  \tan 6  is positive D)  \sin 6  is positive,  \cos 6  is negative,  \tan 6  is positive E)  \sin 6  is negative,  \cos 6  is negative,  \tan 6  is positive <div style=padding-top: 35px>

A) sin6\sin 6 is positive, cos6\cos 6 is positive, tan6\tan 6 is negative
B) sin6\sin 6 is negative, cos6\cos 6 is positive, tan6\tan 6 is negative
C) sin6\sin 6 is positive, cos6\cos 6 is positive, tan6\tan 6 is positive
D) sin6\sin 6 is positive, cos6\cos 6 is negative, tan6\tan 6 is positive
E) sin6\sin 6 is negative, cos6\cos 6 is negative, tan6\tan 6 is positive
Question
When a clock reads 2:002 : 00 , what is the radian measure of the (smaller) angle between the hour hand and the minute hand?

A) 3π13\frac { 3 \pi } { 13 } radians
B) 2π9\frac { 2 \pi } { 9 } radians
C) π3\frac { \pi } { 3 } radians
D) π4\frac { \pi } { 4 } radians
E) 2π7\frac { 2 \pi } { 7 } radians
Question
Use the figure to approximate the trigonometric values to within successive tenths. Then use a calculator to compute the values to the nearest hundredth. cos3\cos 3 and sin3\sin 3  <strong>Use the figure to approximate the trigonometric values to within successive tenths. Then use a calculator to compute the values to the nearest hundredth.  \cos 3  and  \sin 3   </strong> A)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\ \hline \sin 3 & - 0.2 < \sin 3 < - 0.1 & - 0.14 \\ \hline \end{array}  B)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.1 < \cos 3 < 0.2 & 0.14 \\ \hline \sin 3 & - 1 < \sin 3 < - 0.9 & - 0.99 \\ \hline \end{array}  C)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\ \hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\ \hline \end{array}  D)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & - 0.2 < \cos 3 < - 0.1 & - 0.14 \\ \hline \sin 3 & 0.9 < \sin 3 < 1 & 0.99 \\ \hline \end{array}  E)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & - 1 < \cos 3 < - 0.9 & - 0.99 \\ \hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\ \hline \end{array}  <div style=padding-top: 35px>

A)  Approximate  Calculator cos30.9<cos3<10.99sin30.2<sin3<0.10.14\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\\hline \sin 3 & - 0.2 < \sin 3 < - 0.1 & - 0.14 \\\hline\end{array}
B)  Approximate  Calculator cos30.1<cos3<0.20.14sin31<sin3<0.90.99\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & 0.1 < \cos 3 < 0.2 & 0.14 \\\hline \sin 3 & - 1 < \sin 3 < - 0.9 & - 0.99 \\\hline\end{array}
C)  Approximate  Calculator cos30.9<cos3<10.99sin30.1<sin3<0.20.14\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\\hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\\hline\end{array}
D)  Approximate  Calculator cos30.2<cos3<0.10.14sin30.9<sin3<10.99\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & - 0.2 < \cos 3 < - 0.1 & - 0.14 \\\hline \sin 3 & 0.9 < \sin 3 < 1 & 0.99 \\\hline\end{array}
E)  Approximate  Calculator cos31<cos3<0.90.99sin30.1<sin3<0.20.14\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & - 1 < \cos 3 < - 0.9 & - 0.99 \\\hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\\hline\end{array}
Question
Refer to the figure, which shows all of the angles from 00 ^ { \circ } to 360360 ^ { \circ } that are multiples of 3030 ^ { \circ } or 4545 ^ { \circ } .  <strong>Refer to the figure, which shows all of the angles from  0 ^ { \circ }  to  360 ^ { \circ }  that are multiples of  30 ^ { \circ }  or  45 ^ { \circ }  .   Relabel the angles in Quadrant I and II using radian measure.</strong> A)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { \pi } { 6 } & \frac { 3 \pi } { 2 } & \frac { 6 \pi } { 7 } & \frac { 5 \pi } { 9 } \\ \hline \end{array}  B)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\ \hline \end{array}  C)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\ \hline \end{array}  D)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\ \hline \end{array}  E)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\ \hline \end{array}  <div style=padding-top: 35px>  Relabel the angles in Quadrant I and II using radian measure.

A) 304560120135150π4π3π63π26π75π9\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { \pi } { 6 } & \frac { 3 \pi } { 2 } & \frac { 6 \pi } { 7 } & \frac { 5 \pi } { 9 } \\\hline\end{array}
B) 3045601201351507π65π44π35π37π411π6\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\\hline\end{array}
C) 3045601201351503π42π54π7π42π35π2\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\\hline\end{array}
D) 304560120135150π6π4π32π33π45π6\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\\hline\end{array}
E) 3045601201351507π6π3π52π33π73π2\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\\hline\end{array}
Question
Evaluate the expressions using reference angles. csc(840)\csc \left( - 840 ^ { \circ } \right) cot(840)\cot \left( - 840 ^ { \circ } \right)

A) csc(840)=223\csc \left( - 840 ^ { \circ } \right) = - \frac { 2 \sqrt { 2 } } { 3 } cot(840)=22\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 2 } } { 2 }
B) csc(840)=33\csc \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 3 } } { 3 } cot(840)=33\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 3 } } { 3 }
C) csc(840)=22\csc \left( - 840 ^ { \circ } \right) = - \frac { \sqrt { 2 } } { 2 } cot(840)=23\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 2 } } { 3 }
D) csc(840)=13\csc \left( - 840 ^ { \circ } \right) = - \frac { 1 } { 3 } cot(840)=13\cot \left( - 840 ^ { \circ } \right) = \frac { 1 } { 3 }
E) csc(840)=233\csc \left( - 840 ^ { \circ } \right) = - \frac { 2 \sqrt { 3 } } { 3 } cot(840)=33\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 3 } } { 3 }
Question
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the given angle: 2π2 \pi

A) sin2π=0,cos2π=1,tan2π=0,sec2π=1,csc2π is undefined, cot2π is undefined. \sin 2 \pi = 0 , \cos 2 \pi = 1 , \tan 2 \pi = 0 , \sec 2 \pi = 1 , \csc 2 \pi \text { is undefined, } \cot 2 \pi \text { is undefined. }
B) sin2π=1,cos2π=1,tan2π=1,sec2π=1,csc2π=1,cot2π=1\sin 2 \pi = 1 , \cos 2 \pi = 1 , \tan 2 \pi = 1 , \sec 2 \pi = 1 , \csc 2 \pi = 1 , \cot 2 \pi = 1
C) sin2π=0,cos2π=1,tan2π is undefined, sec2π is undefined. csc2π=0,cot2π=1\sin 2 \pi = 0 , \cos 2 \pi = 1 , \tan 2 \pi \text { is undefined, } \sec 2 \pi \text { is undefined. } \csc 2 \pi = 0 , \cot 2 \pi = 1
D) sin2π=1cos2π=1tan2π=1sec2π=1csc2π=1cot2π=1\sin 2 \pi = - 1 \cdot \cos 2 \pi = 1 \cdot \tan 2 \pi = - 1 \cdot \sec 2 \pi = 1 \cdot \csc 2 \pi = 1 \cdot \cot 2 \pi = 1
E) sin2π=1,cos2π=0,tan2π is undefined, sec2π is undefined. csc2π=1,cot2π=0\sin 2 \pi = 1 , \cos 2 \pi = 0 , \tan 2 \pi \text { is undefined, } \sec 2 \pi \text { is undefined. } \csc 2 \pi = - 1 , \cot 2 \pi = 0
Question
Match an appropriate value from the right-hand column with each expression in the left-hand column.
a. sec30\sec 30 ^ { \circ }
A. 3\sqrt { 3 }
b. csc30\csc 30 ^ { \circ }
B. 2\sqrt { 2 }
c. csc60\csc 60 ^ { \circ }
C. 23\frac { 2 } { \sqrt { 3 } }
d. sec60\sec 60 ^ { \circ }
D. 22\frac { \sqrt { 2 } } { 2 }
E. 22
F. 12\frac { 1 } { 2 }

A) sec30\sec 30 ^ { \circ } 3\sqrt { 3 } csc30\csc 30 ^ { \circ } 2\sqrt { 2 } csc60\csc 60 ^ { \circ } 12\frac { 1 } { 2 } sec60\sec 60 ^ { \circ } 233\frac { 2 \sqrt { 3 } } { 3 }
B) sec303csc303csc60233sec602\sec 30 ^ { \circ } \sqrt { 3 } \csc 30 ^ { \circ } \sqrt { 3 } \csc 60 ^ { \circ } \frac { 2 \sqrt { 3 } } { 3 } \sec 60 ^ { \circ } 2
C) Sec3022csc302csc60233sec602\operatorname { Sec } 30 ^ { \circ } \frac { \sqrt { 2 } } { 2 } \csc 30 ^ { \circ } 2 \csc 60 ^ { \circ } 2 \frac { \sqrt { 3 } } { 3 } \sec 60 ^ { \circ } 2
D) Sec3022csc302csc6022sec602\operatorname { Sec } 30 ^ { \circ } \frac { \sqrt { 2 } } { 2 } \csc 30 ^ { \circ } \quad \sqrt { 2 } \csc 60 ^ { \circ } \frac { \sqrt { 2 } } { 2 } \sec 60 ^ { \circ } \quad \sqrt { 2 }
E) Sec30233csc302csc60233sec602\operatorname { Sec } 30 ^ { \circ } \frac { 2 \sqrt { 3 } } { 3 } \csc 30 ^ { \circ } 2 \csc 60 ^ { \circ } \frac { 2 \sqrt { 3 } } { 3 } \sec 60 ^ { \circ } 2
Question
Simplify the expression and enter the answer in terms of sine and cosine. (secB+tanB)(secBtanB)( \sec B + \tan B ) ( \sec B - \tan B )

A) sec2B+tan2B\sec ^ { 2 } B + \tan ^ { 2 } B
B) 2cosBsinB- 2 \cos B \sin B
C) 00
D) 11
E) 1cos2B1 - \cos ^ { 2 } B
Question
Suppose that ABCA B C is a right triangle with C=90\angle C = 90 ^ { \circ } . If AC=12A C = 12 and BC=6B C = 6 , find the quantities. cosA,sinA,tanA,secB,cscB,cotB\cos A , \sin A , \tan A , \sec B , \csc B , \cot B .

A) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = 5 , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=15\csc B = \frac { 1 } { 5 } , cotB=12\cot B = \frac { 1 } { 2 }
B) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=2\tan A = 2 , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=12\cot B = \frac { 1 } { 2 }
C) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=52\sec B = \frac { \sqrt { 5 } } { 2 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=5\csc B = \sqrt { 5 } , cotB=2\cot B = 2
D) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=12\cot B = \frac { 1 } { 2 }
E) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=2\cot B = 2
Question
Rewrite in terms of sine and cosine, and simplify the expression: cotβcotβcosβcosβsinβcosβcotβ\frac { \cot \beta - \cot \beta \cos \beta - \cos \beta \sin \beta } { \cos \beta \cot \beta }

A) cot2βcos2β\cot ^ { 2 } \beta - \cos ^ { 2 } \beta
B) cosβcotβ\cos \beta - \cot \beta
C) cosβ1\cos \beta - 1
D) sinβcosβ\sin \beta - \cos \beta
E) cosβcotβcosβ+1\frac { \cos \beta \cot \beta } { \cos \beta + 1 }
Question
Which of the following is equal to: sinθcscθ+cosθsecθ\frac { \sin \theta } { \csc \theta } + \frac { \cos \theta } { \sec \theta }

A) 1sinθ1+sinθ\frac { 1 - \sin \theta } { 1 + \sin \theta }
B) 2cos2θ12 \cos ^ { 2 } \theta - 1
C) 2cos2θ2 \cos ^ { 2 } \theta
D) 11
E) 2cscθ2 \csc \theta
Question
Which of the following is equal to: cos2Csin2C\cos ^ { 2 } C - \sin ^ { 2 } C

A) 12sin2c1 - 2 \sin ^ { 2 } c
B) tanCsinC\tan C \sin C
C) 2secCcscC2 - \sec C \csc C
D) csc2Csec2C\csc ^ { 2 } C \sec ^ { 2 } C
E) 1cos2CcosC\frac { 1 - \cos ^ { 2 } C } { \cos C }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/25
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: The Trigonometric Functions
1
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the given angle: 3π2\frac { 3 \pi } { 2 }

A) cos3π2=0\cos \frac { 3 \pi } { 2 } = 0 , sin3π2=1\sin \frac { 3 \pi } { 2 } = - 1 , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
B) cos3π2=1\cos \frac { 3 \pi } { 2 } = - 1 , sin3π2=1\sin \frac { 3 \pi } { 2 } = 1 , tan3π2=0\tan \frac { 3 \pi } { 2 } = 0 , sec3π2=1\sec \frac { 3 \pi } { 2 } = - 1 , cot3π2\cot \frac { 3 \pi } { 2 } is undefined, csc3π2\csc \frac { 3 \pi } { 2 } is undefined.
C) cos3π2=1\cos \frac { 3 \pi } { 2 } = 1 , sin3π2=1\sin \frac { 3 \pi } { 2 } = 1 , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
D) cos3π2=12\cos \frac { 3 \pi } { 2 } = - \frac { 1 } { 2 } , sin3π2=32\sin \frac { 3 \pi } { 2 } = \frac { \sqrt { 3 } } { 2 } , tan3π2=0\tan \frac { 3 \pi } { 2 } = 0 , sec3π2=1\sec \frac { 3 \pi } { 2 } = - 1 , cot3π2\cot \frac { 3 \pi } { 2 } is undefined, csc3π2\csc \frac { 3 \pi } { 2 } is undefined.
E) cos3π2=12\cos \frac { 3 \pi } { 2 } = - \frac { 1 } { 2 } , sin3π2=32\sin \frac { 3 \pi } { 2 } = \frac { \sqrt { 3 } } { 2 } , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
cos3π2=0\cos \frac { 3 \pi } { 2 } = 0 , sin3π2=1\sin \frac { 3 \pi } { 2 } = - 1 , tan3π2\tan \frac { 3 \pi } { 2 } is undefined, sec3π2\sec \frac { 3 \pi } { 2 } is undefined, cot3π2=0\cot \frac { 3 \pi } { 2 } = 0 , csc3π2=1\csc \frac { 3 \pi } { 2 } = - 1 .
2
Rewrite in terms of sine and cosine, and simplify the expression: 3sinθ+6sin2θ4\frac { 3 \sin \theta + 6 } { \sin ^ { 2 } \theta - 4 }

A) sinθ+24\frac { \sin \theta + 2 } { 4 }
B) sinθ23\frac { \sin \theta - 2 } { 3 }
C) 6sinθ+2\frac { 6 } { \sin \theta + 2 }
D) 3sinθ2\frac { 3 } { \sin \theta - 2 }
E) sinθ+26\frac { \sin \theta + 2 } { 6 }
3sinθ2\frac { 3 } { \sin \theta - 2 }
3
Rewrite in terms of sine and cosine, and simplify the expression: secAcscAtanAcotA\sec A \csc A - \tan A - \cot A

A) secA\sec A
B) 00
C) cotA\cot A
D) 11
E) tanA\tan A
00
4
Use the definition θ=sr\theta = \frac { s } { r } to determine the radian measure of the angle.  <strong>Use the definition  \theta = \frac { s } { r }  to determine the radian measure of the angle.  </strong> A)  \theta = 4.05  radians B)  \theta = 3  radians C)  \theta = 3.08  radians D)  \theta  radians E)  \theta = 3.15  radians

A) θ=4.05\theta = 4.05 radians
B) θ=3\theta = 3 radians
C) θ=3.08\theta = 3.08 radians
D) θ\theta radians
E) θ=3.15\theta = 3.15 radians
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
5
Use the definition θ=sr\theta = \frac { s } { r } to determine the radian measure of the angle in the figure below.  <strong>Use the definition  \theta = \frac { s } { r }  to determine the radian measure of the angle in the figure below.  </strong> A)  \theta = 0.2  radians B)  \theta = 0.4  radians C)  \theta = 1.25  radians D)  \theta = 0.83  radians E)  \theta = 0.13  radians

A) θ=0.2\theta = 0.2 radians
B) θ=0.4\theta = 0.4 radians
C) θ=1.25\theta = 1.25 radians
D) θ=0.83\theta = 0.83 radians
E) θ=0.13\theta = 0.13 radians
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
6
Evaluate the expressions using reference angles. sec(7π4)\sec \left( \frac { 7 \pi } { 4 } \right) tan(7π4)\tan \left( \frac { 7 \pi } { 4 } \right)

A) sec(7π4)=3\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 3 } tan(7π4)=2\tan \left( \frac { 7 \pi } { 4 } \right) = 2
B) sec(7π4)=2\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 2 } tan(7π4)=1\tan \left( \frac { 7 \pi } { 4 } \right) = - 1
C) sec(7π4)=2\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 2 } tan(7π4)=12\tan \left( \frac { 7 \pi } { 4 } \right) = - \frac { 1 } { 2 }
D) sec(7π4)=22\sec \left( \frac { 7 \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } tan(7π4)=4\tan \left( \frac { 7 \pi } { 4 } \right) = - 4
E) sec(7π4)=5\sec \left( \frac { 7 \pi } { 4 } \right) = \sqrt { 5 } tan(7π4)=1\tan \left( \frac { 7 \pi } { 4 } \right) = - 1
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
7
Let P(x,y)P ( x , y ) denote the point where the terminal side of angle θ\theta (in standard position) meets the unit circle. Use the information to evaluate the six trigonometric functions of θ\theta . PP is in Quadrant IV and y=34y = - \frac { 3 } { 4 } .

A) sinθ=74\sin \theta = - \frac { \sqrt { 7 } } { 4 } , cosθ=34\cos \theta = \frac { 3 } { 4 } , tanθ=73\tan \theta = - \frac { \sqrt { 7 } } { 3 } , secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=477\csc \theta = \frac { 4 \sqrt { 7 } } { 7 } , cotθ=377\cot \theta = \frac { 3 \sqrt { 7 } } { 7 }
B) sinθ=74\sin \theta = - \frac { \sqrt { 7 } } { 4 } , cosθ=34\cos \theta = \frac { 3 } { 4 } , tanθ=73\tan \theta = \frac { \sqrt { 7 } } { 3 } , secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=477\csc \theta = - \frac { 4 \sqrt { 7 } } { 7 } , cotθ=377\cot \theta = \frac { 3 \sqrt { 7 } } { 7 }
C) sinθ=34\sin \theta = - \frac { 3 } { 4 } , cosθ=74\cos \theta = \frac { \sqrt { 7 } } { 4 } , tanθ=377\tan \theta = - \frac { 3 \sqrt { 7 } } { 7 } , secθ=477\sec \theta = \frac { 4 \sqrt { 7 } } { 7 } , cscθ=43\csc \theta = - \frac { 4 } { 3 } , cotθ=73\cot \theta = - \frac { \sqrt { 7 } } { 3 }
D) sinθ=74cosθ=34tanθ=73\sin \theta = \frac { \sqrt { 7 } } { 4 } \quad \cos \theta = - \frac { 3 } { 4 } \quad \tan \theta = - \frac { \sqrt { 7 } } { 3 } secθ=43\sec \theta = \frac { 4 } { 3 } , cscθ=77\csc \theta = \frac { \sqrt { 7 } } { 7 } , cotθ=77\cot \theta = - \frac { \sqrt { 7 } } { 7 }
E) sinθ=34\sin \theta = \frac { 3 } { 4 } , cosθ=74\cos \theta = - \frac { \sqrt { 7 } } { 4 } , tanθ=377\tan \theta = \frac { 3 \sqrt { 7 } } { 7 } , secθ=477\sec \theta = - \frac { 4 \sqrt { 7 } } { 7 } , cscθ=43\csc \theta = \frac { 4 } { 3 } , cotθ=73\cot \theta = \frac { \sqrt { 7 } } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
8
Refer to the figure, which shows all of the angles from 00 ^ { \circ } to 360360 ^ { \circ } that are multiples of 3030 ^ { \circ } or 4545 ^ { \circ } .  <strong>Refer to the figure, which shows all of the angles from  0 ^ { \circ }  to  360 ^ { \circ }  that are multiples of  30 ^ { \circ }  or  45 ^ { \circ }  .   Relabel the angles in Quadrant III and IV using radian measure.</strong> A)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\ \hline \end{array}  B)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 9 \pi } { 4 } & \frac { 7 \pi } { 4 } & \frac { 5 \pi } { 6 } & \frac { 10 \pi } { 3 } & \frac { 11 \pi } { 4 } & \frac { 11 \pi } { 6 } \\ \hline \end{array}  C)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\ \hline \end{array}  D)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\ \hline \end{array}  E)  \begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\ \hline \end{array}   Relabel the angles in Quadrant III and IV using radian measure.

A) 2102252403003153303π42π54π7π42π35π2\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\\hline\end{array}
B) 2102252403003153309π47π45π610π311π411π6\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 9 \pi } { 4 } & \frac { 7 \pi } { 4 } & \frac { 5 \pi } { 6 } & \frac { 10 \pi } { 3 } & \frac { 11 \pi } { 4 } & \frac { 11 \pi } { 6 } \\\hline\end{array}
C) 2102252403003153307π6π3π52π33π73π2\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\\hline\end{array}
D) 210225240300315330π6π4π32π33π45π6\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\\hline\end{array}
E) 2102252403003153307π65π44π35π37π411π6\begin{array} { | c | c | c | c | c | c | } \hline 210 ^ { \circ } & 225 ^ { \circ } & 240 ^ { \circ } & 300 ^ { \circ } & 315 ^ { \circ } & 330 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\\hline\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
9
Factor the expression. 3sec2β+8secβ163 \sec ^ { 2 } \beta + 8 \sec \beta - 16

A) (3secβ3)(secβ+5)( 3 \sec \beta - 3 ) ( \sec \beta + 5 )
B) (3secβ7)(secβ+4)( 3 \sec \beta - 7 ) ( \sec \beta + 4 )
C) (3secβ7)(secβ+3)( 3 \sec \beta - 7 ) ( \sec \beta + 3 )
D) (3secβ5)(secβ+6)( 3 \sec \beta - 5 ) ( \sec \beta + 6 )
E) (3secβ4)(secβ+4)( 3 \sec \beta - 4 ) ( \sec \beta + 4 )
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
10
Factor the expression. tan2β+6tanβ7\tan ^ { 2 } \beta + 6 \tan \beta - 7

A) (tanβ3)(tanβ+5)( \tan \beta - 3 ) ( \tan \beta + 5 )
B) (tanβ1)(tanβ+7)( \tan \beta - 1 ) ( \tan \beta + 7 )
C) (tanβ1)(tanβ+6)( \tan \beta - 1 ) ( \tan \beta + 6 )
D) (tanβ4)(tanβ+4)( \tan \beta - 4 ) ( \tan \beta + 4 )
E) (tanβ5)(tanβ+4)( \tan \beta - 5 ) ( \tan \beta + 4 )
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
11
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the given angle: 360- 360 ^ { \circ }

A) sin(360)=0\sin \left( - 360 ^ { \circ } \right) = 0 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = 1 , tan(360)=0\tan \left( - 360 ^ { \circ } \right) = 0 , sec(360)=1\sec \left( - 360 ^ { \circ } \right) = 1 , csc(360)\csc \left( - 360 ^ { \circ } \right) is undefined, cot(360)\cot \left( - 360 ^ { \circ } \right) is undefined.
B) sin(360)=0\sin \left( - 360 ^ { \circ } \right) = 0 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = 1 , tan(360)\tan \left( - 360 ^ { \circ } \right) is undefined, sec(360)\sec \left( - 360 ^ { \circ } \right) is undefined. csc(360)=0\csc \left( - 360 ^ { \circ } \right) = 0 , cot(360)=1\cot \left( - 360 ^ { \circ } \right) = 1 .
C) sin(360)=0\sin \left( - 360 ^ { \circ } \right) = 0 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = - 1 , tan(360)=0\tan \left( - 360 ^ { \circ } \right) = 0 , sec(360)=1\sec \left( - 360 ^ { \circ } \right) = - 1 , csc(360)\csc \left( - 360 ^ { \circ } \right) is undefined, cot(360)\cot \left( - 360 ^ { \circ } \right) is undefined.
D) sin(360)=1\sin \left( - 360 ^ { \circ } \right) = 1 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = 1 , tan(360)\tan \left( - 360 ^ { \circ } \right) is undefined, sec(360)\sec \left( - 360 ^ { \circ } \right) is undefined. csc(360)=0\csc \left( - 360 ^ { \circ } \right) = 0 , cot(360)=0\cot \left( - 360 ^ { \circ } \right) = 0 .
E) sin(360)=1\sin \left( - 360 ^ { \circ } \right) = 1 , cos(360)=1\cos \left( - 360 ^ { \circ } \right) = - 1 , tan(360)=1\tan \left( - 360 ^ { \circ } \right) = 1 , sec(360)=1\sec \left( - 360 ^ { \circ } \right) = - 1 , csc(360)\csc \left( - 360 ^ { \circ } \right) is undefined, cot(360)\cot \left( - 360 ^ { \circ } \right) is undefined.
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
12
You are given the rate of rotation of a wheel as well as its radius. Determine the following: (a) the angular speed, in units of radians/sec; (b) the linear speed, in units of cm/sec, of a point on the circumference of the wheel; (c) and the linear speed, in cm/sec, of a point halfway between the center of the wheel and the circumference. 520520 rpm; r=45r = 45 cm

A) (a) 156 π\pi radian/sec,
(b) 780 π\pi cm/sec,
(c) 390 π\pi cm/sec
B) (a) 166 π radian/sec166 ~\pi ~\mathrm { radian } / \mathrm { sec }
(b) 1,278 π\pi cm/sec,
(c) 400 π\pi cm/sec
C) (a) 52π11\frac { 52 \pi } { 11 } radian/sec,
(b) 1,248 π\pi cm/sec,
(c) 624 π\pi cm/sec
D) (a) 520 π\pi radian/sec,
(b) 780 π\pi cm/sec,
(c) 1,560 π\pi cm/sec
E) (a) 52π3\frac { 52 \pi } { 3 } radian/sec,
(b) 780 π\pi cm/sec,
(c) 390 π\pi cm/sec
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
13
Use a calculator to evaluate secθ\sec \theta , cscθ\csc \theta , and cotθ\cot \theta for the value of θ\theta . Round the answers to two decimal places. θ=27\theta = 27 ^ { \circ }

A) secθ=1.12\sec \theta = 1.12 cscθ=2.20\csc \theta = 2.20 cotθ=1.96\cot \theta = 1.96
B) secθ=1.32\sec \theta = 1.32 cscθ=1.87\csc \theta = 1.87 cotθ=1.67\cot \theta = 1.67
C) secθ=1.60\sec \theta = 1.60 cscθ=3.15\csc \theta = 3.15 cotθ=1.37\cot \theta = 1.37
D) secθ=1.12\sec \theta = 1.12 cscθ=3.15\csc \theta = 3.15 cotθ=1.67\cot \theta = 1.67
E) secθ=1.32\sec \theta = 1.32 cscθ=2.20\csc \theta = 2.20 cotθ=1.37\cot \theta = 1.37
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
14
Refer to the figure, which indicates radian measure on the unit circle for angles in standard position. Use the figure (and the unit circle definitions) to determine whether sin6,cos6\sin 6 , \cos 6 and tan6\tan 6 are positive or negative.  <strong>Refer to the figure, which indicates radian measure on the unit circle for angles in standard position. Use the figure (and the unit circle definitions) to determine whether  \sin 6 , \cos 6  and  \tan 6  are positive or negative.  </strong> A)  \sin 6  is positive,  \cos 6  is positive,  \tan 6  is negative B)  \sin 6  is negative,  \cos 6  is positive,  \tan 6  is negative C)  \sin 6  is positive,  \cos 6  is positive,  \tan 6  is positive D)  \sin 6  is positive,  \cos 6  is negative,  \tan 6  is positive E)  \sin 6  is negative,  \cos 6  is negative,  \tan 6  is positive

A) sin6\sin 6 is positive, cos6\cos 6 is positive, tan6\tan 6 is negative
B) sin6\sin 6 is negative, cos6\cos 6 is positive, tan6\tan 6 is negative
C) sin6\sin 6 is positive, cos6\cos 6 is positive, tan6\tan 6 is positive
D) sin6\sin 6 is positive, cos6\cos 6 is negative, tan6\tan 6 is positive
E) sin6\sin 6 is negative, cos6\cos 6 is negative, tan6\tan 6 is positive
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
15
When a clock reads 2:002 : 00 , what is the radian measure of the (smaller) angle between the hour hand and the minute hand?

A) 3π13\frac { 3 \pi } { 13 } radians
B) 2π9\frac { 2 \pi } { 9 } radians
C) π3\frac { \pi } { 3 } radians
D) π4\frac { \pi } { 4 } radians
E) 2π7\frac { 2 \pi } { 7 } radians
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
16
Use the figure to approximate the trigonometric values to within successive tenths. Then use a calculator to compute the values to the nearest hundredth. cos3\cos 3 and sin3\sin 3  <strong>Use the figure to approximate the trigonometric values to within successive tenths. Then use a calculator to compute the values to the nearest hundredth.  \cos 3  and  \sin 3   </strong> A)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\ \hline \sin 3 & - 0.2 < \sin 3 < - 0.1 & - 0.14 \\ \hline \end{array}  B)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.1 < \cos 3 < 0.2 & 0.14 \\ \hline \sin 3 & - 1 < \sin 3 < - 0.9 & - 0.99 \\ \hline \end{array}  C)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\ \hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\ \hline \end{array}  D)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & - 0.2 < \cos 3 < - 0.1 & - 0.14 \\ \hline \sin 3 & 0.9 < \sin 3 < 1 & 0.99 \\ \hline \end{array}  E)  \begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\ \hline \cos 3 & - 1 < \cos 3 < - 0.9 & - 0.99 \\ \hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\ \hline \end{array}

A)  Approximate  Calculator cos30.9<cos3<10.99sin30.2<sin3<0.10.14\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\\hline \sin 3 & - 0.2 < \sin 3 < - 0.1 & - 0.14 \\\hline\end{array}
B)  Approximate  Calculator cos30.1<cos3<0.20.14sin31<sin3<0.90.99\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & 0.1 < \cos 3 < 0.2 & 0.14 \\\hline \sin 3 & - 1 < \sin 3 < - 0.9 & - 0.99 \\\hline\end{array}
C)  Approximate  Calculator cos30.9<cos3<10.99sin30.1<sin3<0.20.14\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & 0.9 < \cos 3 < 1 & 0.99 \\\hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\\hline\end{array}
D)  Approximate  Calculator cos30.2<cos3<0.10.14sin30.9<sin3<10.99\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & - 0.2 < \cos 3 < - 0.1 & - 0.14 \\\hline \sin 3 & 0.9 < \sin 3 < 1 & 0.99 \\\hline\end{array}
E)  Approximate  Calculator cos31<cos3<0.90.99sin30.1<sin3<0.20.14\begin{array} { | c | c | c | } \hline & \text { Approximate } & \text { Calculator } \\\hline \cos 3 & - 1 < \cos 3 < - 0.9 & - 0.99 \\\hline \sin 3 & 0.1 < \sin 3 < 0.2 & 0.14 \\\hline\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
17
Refer to the figure, which shows all of the angles from 00 ^ { \circ } to 360360 ^ { \circ } that are multiples of 3030 ^ { \circ } or 4545 ^ { \circ } .  <strong>Refer to the figure, which shows all of the angles from  0 ^ { \circ }  to  360 ^ { \circ }  that are multiples of  30 ^ { \circ }  or  45 ^ { \circ }  .   Relabel the angles in Quadrant I and II using radian measure.</strong> A)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { \pi } { 6 } & \frac { 3 \pi } { 2 } & \frac { 6 \pi } { 7 } & \frac { 5 \pi } { 9 } \\ \hline \end{array}  B)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\ \hline \end{array}  C)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\ \hline \end{array}  D)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\ \hline \end{array}  E)  \begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\ \hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\ \hline \end{array}   Relabel the angles in Quadrant I and II using radian measure.

A) 304560120135150π4π3π63π26π75π9\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { \pi } { 6 } & \frac { 3 \pi } { 2 } & \frac { 6 \pi } { 7 } & \frac { 5 \pi } { 9 } \\\hline\end{array}
B) 3045601201351507π65π44π35π37π411π6\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { 5 \pi } { 4 } & \frac { 4 \pi } { 3 } & \frac { 5 \pi } { 3 } & \frac { 7 \pi } { 4 } & \frac { 11 \pi } { 6 } \\\hline\end{array}
C) 3045601201351503π42π54π7π42π35π2\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { 3 \pi } { 4 } & \frac { 2 \pi } { 5 } & \frac { 4 \pi } { 7 } & \frac { \pi } { 4 } & \frac { 2 \pi } { 3 } & \frac { 5 \pi } { 2 } \\\hline\end{array}
D) 304560120135150π6π4π32π33π45π6\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { \pi } { 6 } & \frac { \pi } { 4 } & \frac { \pi } { 3 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 4 } & \frac { 5 \pi } { 6 } \\\hline\end{array}
E) 3045601201351507π6π3π52π33π73π2\begin{array} { | c | c | c | c | c | c | } \hline 30 ^ { \circ } & 45 ^ { \circ } & 60 ^ { \circ } & 120 ^ { \circ } & 135 ^ { \circ } & 150 ^ { \circ } \\\hline \frac { 7 \pi } { 6 } & \frac { \pi } { 3 } & \frac { \pi } { 5 } & \frac { 2 \pi } { 3 } & \frac { 3 \pi } { 7 } & \frac { 3 \pi } { 2 } \\\hline\end{array}
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate the expressions using reference angles. csc(840)\csc \left( - 840 ^ { \circ } \right) cot(840)\cot \left( - 840 ^ { \circ } \right)

A) csc(840)=223\csc \left( - 840 ^ { \circ } \right) = - \frac { 2 \sqrt { 2 } } { 3 } cot(840)=22\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 2 } } { 2 }
B) csc(840)=33\csc \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 3 } } { 3 } cot(840)=33\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 3 } } { 3 }
C) csc(840)=22\csc \left( - 840 ^ { \circ } \right) = - \frac { \sqrt { 2 } } { 2 } cot(840)=23\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 2 } } { 3 }
D) csc(840)=13\csc \left( - 840 ^ { \circ } \right) = - \frac { 1 } { 3 } cot(840)=13\cot \left( - 840 ^ { \circ } \right) = \frac { 1 } { 3 }
E) csc(840)=233\csc \left( - 840 ^ { \circ } \right) = - \frac { 2 \sqrt { 3 } } { 3 } cot(840)=33\cot \left( - 840 ^ { \circ } \right) = \frac { \sqrt { 3 } } { 3 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
19
Use the definitions (not a calculator) to evaluate the six trigonometric functions of the given angle: 2π2 \pi

A) sin2π=0,cos2π=1,tan2π=0,sec2π=1,csc2π is undefined, cot2π is undefined. \sin 2 \pi = 0 , \cos 2 \pi = 1 , \tan 2 \pi = 0 , \sec 2 \pi = 1 , \csc 2 \pi \text { is undefined, } \cot 2 \pi \text { is undefined. }
B) sin2π=1,cos2π=1,tan2π=1,sec2π=1,csc2π=1,cot2π=1\sin 2 \pi = 1 , \cos 2 \pi = 1 , \tan 2 \pi = 1 , \sec 2 \pi = 1 , \csc 2 \pi = 1 , \cot 2 \pi = 1
C) sin2π=0,cos2π=1,tan2π is undefined, sec2π is undefined. csc2π=0,cot2π=1\sin 2 \pi = 0 , \cos 2 \pi = 1 , \tan 2 \pi \text { is undefined, } \sec 2 \pi \text { is undefined. } \csc 2 \pi = 0 , \cot 2 \pi = 1
D) sin2π=1cos2π=1tan2π=1sec2π=1csc2π=1cot2π=1\sin 2 \pi = - 1 \cdot \cos 2 \pi = 1 \cdot \tan 2 \pi = - 1 \cdot \sec 2 \pi = 1 \cdot \csc 2 \pi = 1 \cdot \cot 2 \pi = 1
E) sin2π=1,cos2π=0,tan2π is undefined, sec2π is undefined. csc2π=1,cot2π=0\sin 2 \pi = 1 , \cos 2 \pi = 0 , \tan 2 \pi \text { is undefined, } \sec 2 \pi \text { is undefined. } \csc 2 \pi = - 1 , \cot 2 \pi = 0
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
20
Match an appropriate value from the right-hand column with each expression in the left-hand column.
a. sec30\sec 30 ^ { \circ }
A. 3\sqrt { 3 }
b. csc30\csc 30 ^ { \circ }
B. 2\sqrt { 2 }
c. csc60\csc 60 ^ { \circ }
C. 23\frac { 2 } { \sqrt { 3 } }
d. sec60\sec 60 ^ { \circ }
D. 22\frac { \sqrt { 2 } } { 2 }
E. 22
F. 12\frac { 1 } { 2 }

A) sec30\sec 30 ^ { \circ } 3\sqrt { 3 } csc30\csc 30 ^ { \circ } 2\sqrt { 2 } csc60\csc 60 ^ { \circ } 12\frac { 1 } { 2 } sec60\sec 60 ^ { \circ } 233\frac { 2 \sqrt { 3 } } { 3 }
B) sec303csc303csc60233sec602\sec 30 ^ { \circ } \sqrt { 3 } \csc 30 ^ { \circ } \sqrt { 3 } \csc 60 ^ { \circ } \frac { 2 \sqrt { 3 } } { 3 } \sec 60 ^ { \circ } 2
C) Sec3022csc302csc60233sec602\operatorname { Sec } 30 ^ { \circ } \frac { \sqrt { 2 } } { 2 } \csc 30 ^ { \circ } 2 \csc 60 ^ { \circ } 2 \frac { \sqrt { 3 } } { 3 } \sec 60 ^ { \circ } 2
D) Sec3022csc302csc6022sec602\operatorname { Sec } 30 ^ { \circ } \frac { \sqrt { 2 } } { 2 } \csc 30 ^ { \circ } \quad \sqrt { 2 } \csc 60 ^ { \circ } \frac { \sqrt { 2 } } { 2 } \sec 60 ^ { \circ } \quad \sqrt { 2 }
E) Sec30233csc302csc60233sec602\operatorname { Sec } 30 ^ { \circ } \frac { 2 \sqrt { 3 } } { 3 } \csc 30 ^ { \circ } 2 \csc 60 ^ { \circ } \frac { 2 \sqrt { 3 } } { 3 } \sec 60 ^ { \circ } 2
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
21
Simplify the expression and enter the answer in terms of sine and cosine. (secB+tanB)(secBtanB)( \sec B + \tan B ) ( \sec B - \tan B )

A) sec2B+tan2B\sec ^ { 2 } B + \tan ^ { 2 } B
B) 2cosBsinB- 2 \cos B \sin B
C) 00
D) 11
E) 1cos2B1 - \cos ^ { 2 } B
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
22
Suppose that ABCA B C is a right triangle with C=90\angle C = 90 ^ { \circ } . If AC=12A C = 12 and BC=6B C = 6 , find the quantities. cosA,sinA,tanA,secB,cscB,cotB\cos A , \sin A , \tan A , \sec B , \csc B , \cot B .

A) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = 5 , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=15\csc B = \frac { 1 } { 5 } , cotB=12\cot B = \frac { 1 } { 2 }
B) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=2\tan A = 2 , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=12\cot B = \frac { 1 } { 2 }
C) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=52\sec B = \frac { \sqrt { 5 } } { 2 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=5\csc B = \sqrt { 5 } , cotB=2\cot B = 2
D) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=12\cot B = \frac { 1 } { 2 }
E) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=2\cot B = 2
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
23
Rewrite in terms of sine and cosine, and simplify the expression: cotβcotβcosβcosβsinβcosβcotβ\frac { \cot \beta - \cot \beta \cos \beta - \cos \beta \sin \beta } { \cos \beta \cot \beta }

A) cot2βcos2β\cot ^ { 2 } \beta - \cos ^ { 2 } \beta
B) cosβcotβ\cos \beta - \cot \beta
C) cosβ1\cos \beta - 1
D) sinβcosβ\sin \beta - \cos \beta
E) cosβcotβcosβ+1\frac { \cos \beta \cot \beta } { \cos \beta + 1 }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
24
Which of the following is equal to: sinθcscθ+cosθsecθ\frac { \sin \theta } { \csc \theta } + \frac { \cos \theta } { \sec \theta }

A) 1sinθ1+sinθ\frac { 1 - \sin \theta } { 1 + \sin \theta }
B) 2cos2θ12 \cos ^ { 2 } \theta - 1
C) 2cos2θ2 \cos ^ { 2 } \theta
D) 11
E) 2cscθ2 \csc \theta
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
25
Which of the following is equal to: cos2Csin2C\cos ^ { 2 } C - \sin ^ { 2 } C

A) 12sin2c1 - 2 \sin ^ { 2 } c
B) tanCsinC\tan C \sin C
C) 2secCcscC2 - \sec C \csc C
D) csc2Csec2C\csc ^ { 2 } C \sec ^ { 2 } C
E) 1cos2CcosC\frac { 1 - \cos ^ { 2 } C } { \cos C }
Unlock Deck
Unlock for access to all 25 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 25 flashcards in this deck.