Deck 7: Calculus of Several Variables

Full screen (f)
exit full mode
Question
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the region bounded by y = ex,y = 2,and x = 0

A)Vertical cross sections: exx20yln2\begin{aligned}e ^ { x } & \leq x \leq 2 \\0 & \leq y \leq \ln 2\end{aligned} Horizontal cross sections: 0yln21x2\begin{array} { l } 0 \leq y \leq \ln 2 \\1 \leq x \leq 2\end{array}
B)Vertical cross sections: exxln20y2\begin{aligned}e ^ { x } & \leq x \leq \ln 2 \\0 & \leq y \leq 2\end{aligned} Horizontal cross sections: 0y21xln2\begin{array} { l } 0 \leq y \leq 2 \\1 \leq x \leq \ln 2\end{array}
C)Vertical cross sections: 0xlnyexy2\begin{aligned}0 & \leq x \leq \ln y \\e ^ { x } & \leq y \leq 2\end{aligned} Horizontal cross sections: 1y20xln2\begin{array} { l } 1 \leq y \leq 2 \\0 \leq x \leq \ln 2\end{array}
D)Vertical cross sections: 0xln2exy2\begin{aligned}0 & \leq x \leq \ln 2 \\e ^ { x } & \leq y \leq 2\end{aligned} Horizontal cross sections: 1y20xlny\begin{array} { l } 1 \leq y \leq 2 \\0 \leq x \leq \ln y\end{array}
Use Space or
up arrow
down arrow
to flip the card.
Question
Given the following points in the plane,find the slope of the least squares line: (1,2),(2,1),(3,3),and (5,6) round your answer to two decimal places,if necessary.

A)0.97
B)1.03
C)1.14
D)1.09
Question
Compute f (ln 2,ln 5)if f(x,y)=e2x+yf ( x , y ) = e ^ { 2 x + y } .

A)10
B)9
C)20
D)None of the above
Question
Use a double integral to find the area of R. R is the triangle with vertices (-2,1),(2,1),and (0,-1).

A) x2x2yx1yx11dydx=4\int _ { x - 2 } ^ { x - 2 } \int _ { y - x - 1 } ^ { y - x - 1 } 1 d y d x = 4
B) y1y1xy1xy+11dxdy=4\int _ { y - 1 } ^ { y - 1 } \int _ { x - - y - 1 } ^ { x - y + 1 } 1 d x d y = 4
C) x=2x2yx1yx11dydx=8\int _ { x = - 2 } ^ { x - 2 } \int _ { y - x - 1 } ^ { y - x - 1 } 1 d y d x = 8
D) y1y1xy1xy+11dxdy=8\int _ { y - 1 } ^ { y - 1 } \int _ { x - - y - 1 } ^ { x - y + 1 } 1 d x d y = 8
Question
Given the function of three variables f (x,y,z)= xy + xz + yz,evaluate f (3,7,7).

A)86
B)100
C)91
D)94
Question
Compute fy for f(x,y)=e8xyf _ { y } \text { for } f ( x , y ) = e ^ { 8 x y }

A) 64e8x64 e ^ { 8 x }
B) 64x2e8x64 x ^ { 2 } e ^ { 8 x }
C) 64x2y2e8x64 x ^ { 2 } y ^ { 2 } e ^ { 8 x }
D) 64y2e8x64 y ^ { 2 } e ^ { 8 x }
Question
Compute all first-order partial derivatives of the given function. f(x,y)=(4x+2y)4f ( x , y ) = ( 4 x + 2 y ) ^ { 4 }

A) fx=16(4x+2y)5f _ { x } = 16 ( 4 x + 2 y ) ^ { 5 } , fy=8(4x+2y)5f _ { y } = 8 ( 4 x + 2 y ) ^ { 5 }
B) fx=16(x+2y)3f _ { x } = 16 ( x + 2 y ) ^ { 3 } , fy=8(4x+2)3f _ { y } = 8 ( 4 x + 2 ) ^ { 3 }
C) fx=16(2y)3f _ { x } = 16 ( 2 y ) ^ { 3 } , fy=8(4x)3f _ { y } = 8 ( 4 x ) ^ { 3 }
D) fx=16(4x+2y)3f _ { x } = 16 ( 4 x + 2 y ) ^ { 3 } , fy=8(4x+2y)3f _ { y } = 8 ( 4 x + 2 y ) ^ { 3 }
Question
A military radar is measuring the distance to a jet fighter.The radar has received the following measurements:
 time t (minutes) 123456 distance (miles) 280289294299308310\begin{array} { l l l l l l l } \text { time } t \text { (minutes) } & 1 & 2 & 3 & 4 & 5 & 6 \\\text { distance (miles) } & 280 & 289 & 294 & 299 & 308 & 310\end{array}
Using a least squares fit to the data,extrapolate to the nearest tenth of a minute when the jet will be 345 miles away?

A)10.4 minutes
B)13.7 minutes
C)12.9 minutes
D)11.5 minutes
Question
Given the following points in the plane,find the y-intercept of the least squares line to two decimal places: (3,3),(5,5),(7,8),and (9,8)

A)-0.90
B)-1.50
C)0.60
D)0.72
Question
Compute fxf _ { x } for f(x,y)=e8xyf ( x , y ) = e ^ { 8 x y }

A) 8xye8xy8 x y e ^ { 8 x y }
B) 8ye8x8 y e ^ { 8 x }
C) 8xe8xy8 x e ^ { 8 x y }
D) 8e8xy8 e ^ { 8 x y }
Question
Compute f (6,0)if f(x,y)=xeyf ( x , y ) = \frac { x } { e ^ { y } } .

A)Undefined
B)6
C)0
D) 16\frac { 1 } { 6 }
Question
Compute fyf _ { y } for f(x,y)=7xy6f ( x , y ) = 7 x y ^ { 6 }

A) 7y67 y ^ { 6 }
B) 42xy5+7y642 x y ^ { 5 } + 7 y ^ { 6 }
C)7x
D) 42xy542 x y ^ { 5 }
Question
A manufacturer is planning to sell a new product at the price of $230 per unit and estimates that if x thousand dollars is spent on development and y thousand dollars is spent on promotion,approximately 340yy+7+170xx+14\frac { 340 y } { y + 7 } + \frac { 170 x } { x + 14 } units of the product will be sold.The cost of manufacturing the product is $160 per unit.If the manufacturer has a total of $340,000 to spend on development and promotion,how should this money be allocated to generate the largest possible profit? [Hint: Profit equals (number of units)(price per unit minus cost per unit)minus total amount spent on development and promotion.]

A)$173,500 on development,$167,000 on promotion
B)$167,000 on development,$173,000 on promotion
C)$166,500 on development,$173,500 on promotion
D)$173,000 on development,$167,000 on promotion
Question
Find the maximum value of the function f (x,y,z)= 7x + 8y + 6z on the sphere x2+y2+z2=596x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 596 .

A)298
B)894
C)1,043.0
D)149
Question
At a certain factory,the output Q is related to inputs x and y by the expression Q(x,y)=2x3+2x2y4+9y5Q ( x , y ) = 2 x ^ { 3 } + 2 x ^ { 2 } y ^ { 4 } + 9 y ^ { 5 } .If 0 \leq x \leq 8 and 0 \leq y \leq 10,what is the average output of the factory? (Approximate to 2 decimal places.)

A)111,504.00 units
B)235,589.33 units
C)235,590.13 units
D)308,341.33 units
Question
Use Lagrange multipliers to find the maximum value of f (x,y)= 9xy subject to the constraint 9x + 3y = 27.

A)f (0,0)= 0
B)f (3,9)= 243
C) f(34,94)=24316f \left( \frac { 3 } { 4 } , \frac { 9 } { 4 } \right) = \frac { 243 } { 16 }
D) f(32,92)=2434f \left( \frac { 3 } { 2 } , \frac { 9 } { 2 } \right) = \frac { 243 } { 4 }
Question
Evaluate the following double integral: 4744x4y7dydx\int _ { - 4 } ^ { 7 } \int _ { - 4 } ^ { 4 } x ^ { 4 } y ^ { 7 } d y d x

A)4
B)The integral can't be evaluated.
C) 14\frac { 1 } { 4 }
D)0
Question
The following data shows the age and income for a small number of people.
 Age (years) 2432395460 Incomes ($) 30,00034,00053,00072,00081,000\begin{array} { r l l l l l } \text { Age (years) } & 24 & 32 & 39 & 54 & 60 \\\text { Incomes (\$) } & 30,000 & 34,000 & 53,000 & 72,000 & 81,000\end{array}
Find the best fit straight line of this data,rounding coefficients and constants to the nearest whole number.Let x represent age and y represent income.

A)y = 3,830x - 8,036
B)y = 3,106x - 8,048
C)y = 1,484x - 8,041
D)None of the above
Question
The only grocery store in a small rural community carries two brands of frozen apple juice,a local brand that it obtains at the cost of 18 cents per can and a well-known national brand that it obtains at the cost of 40 cents per can.The grocer estimates that if the local brand is sold for x cents per can and the national brand for y cents per can,approximately 70 - 5x + 4y cans of the local brand and 80 + 6x - 7y cans of the national brand will be sold each day.How should the grocer price each brand to maximize the profit from the sale of the juice?

A)local brand (x)at 39 cents,national brand (y)at 104 cents
B)local brand (x)at 46 cents,national brand (y)at 52 cents
C)local brand (x)at 44 cents,national brand (y)at 52 cents
D)local brand (x)at 88 cents,national brand (y)at 50 cents
Question
Evaluate the given double integral for the specified region R. R(8x+2y)dA\iint _ { R } ( 8 x + 2 y ) d A ,where R is the triangle with vertices (0,0),(2,0),and (0,1)

A)18
B)12
C) 683\frac { 68 } { 3 }
D) 943\frac { 94 } { 3 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/20
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Calculus of Several Variables
1
Use inequalities to describe R in terms of its vertical and horizontal cross sections. R is the region bounded by y = ex,y = 2,and x = 0

A)Vertical cross sections: exx20yln2\begin{aligned}e ^ { x } & \leq x \leq 2 \\0 & \leq y \leq \ln 2\end{aligned} Horizontal cross sections: 0yln21x2\begin{array} { l } 0 \leq y \leq \ln 2 \\1 \leq x \leq 2\end{array}
B)Vertical cross sections: exxln20y2\begin{aligned}e ^ { x } & \leq x \leq \ln 2 \\0 & \leq y \leq 2\end{aligned} Horizontal cross sections: 0y21xln2\begin{array} { l } 0 \leq y \leq 2 \\1 \leq x \leq \ln 2\end{array}
C)Vertical cross sections: 0xlnyexy2\begin{aligned}0 & \leq x \leq \ln y \\e ^ { x } & \leq y \leq 2\end{aligned} Horizontal cross sections: 1y20xln2\begin{array} { l } 1 \leq y \leq 2 \\0 \leq x \leq \ln 2\end{array}
D)Vertical cross sections: 0xln2exy2\begin{aligned}0 & \leq x \leq \ln 2 \\e ^ { x } & \leq y \leq 2\end{aligned} Horizontal cross sections: 1y20xlny\begin{array} { l } 1 \leq y \leq 2 \\0 \leq x \leq \ln y\end{array}
Vertical cross sections: 0xln2exy2\begin{aligned}0 & \leq x \leq \ln 2 \\e ^ { x } & \leq y \leq 2\end{aligned} Horizontal cross sections: 1y20xlny\begin{array} { l } 1 \leq y \leq 2 \\0 \leq x \leq \ln y\end{array}
2
Given the following points in the plane,find the slope of the least squares line: (1,2),(2,1),(3,3),and (5,6) round your answer to two decimal places,if necessary.

A)0.97
B)1.03
C)1.14
D)1.09
1.14
3
Compute f (ln 2,ln 5)if f(x,y)=e2x+yf ( x , y ) = e ^ { 2 x + y } .

A)10
B)9
C)20
D)None of the above
20
4
Use a double integral to find the area of R. R is the triangle with vertices (-2,1),(2,1),and (0,-1).

A) x2x2yx1yx11dydx=4\int _ { x - 2 } ^ { x - 2 } \int _ { y - x - 1 } ^ { y - x - 1 } 1 d y d x = 4
B) y1y1xy1xy+11dxdy=4\int _ { y - 1 } ^ { y - 1 } \int _ { x - - y - 1 } ^ { x - y + 1 } 1 d x d y = 4
C) x=2x2yx1yx11dydx=8\int _ { x = - 2 } ^ { x - 2 } \int _ { y - x - 1 } ^ { y - x - 1 } 1 d y d x = 8
D) y1y1xy1xy+11dxdy=8\int _ { y - 1 } ^ { y - 1 } \int _ { x - - y - 1 } ^ { x - y + 1 } 1 d x d y = 8
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
5
Given the function of three variables f (x,y,z)= xy + xz + yz,evaluate f (3,7,7).

A)86
B)100
C)91
D)94
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
6
Compute fy for f(x,y)=e8xyf _ { y } \text { for } f ( x , y ) = e ^ { 8 x y }

A) 64e8x64 e ^ { 8 x }
B) 64x2e8x64 x ^ { 2 } e ^ { 8 x }
C) 64x2y2e8x64 x ^ { 2 } y ^ { 2 } e ^ { 8 x }
D) 64y2e8x64 y ^ { 2 } e ^ { 8 x }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
7
Compute all first-order partial derivatives of the given function. f(x,y)=(4x+2y)4f ( x , y ) = ( 4 x + 2 y ) ^ { 4 }

A) fx=16(4x+2y)5f _ { x } = 16 ( 4 x + 2 y ) ^ { 5 } , fy=8(4x+2y)5f _ { y } = 8 ( 4 x + 2 y ) ^ { 5 }
B) fx=16(x+2y)3f _ { x } = 16 ( x + 2 y ) ^ { 3 } , fy=8(4x+2)3f _ { y } = 8 ( 4 x + 2 ) ^ { 3 }
C) fx=16(2y)3f _ { x } = 16 ( 2 y ) ^ { 3 } , fy=8(4x)3f _ { y } = 8 ( 4 x ) ^ { 3 }
D) fx=16(4x+2y)3f _ { x } = 16 ( 4 x + 2 y ) ^ { 3 } , fy=8(4x+2y)3f _ { y } = 8 ( 4 x + 2 y ) ^ { 3 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
8
A military radar is measuring the distance to a jet fighter.The radar has received the following measurements:
 time t (minutes) 123456 distance (miles) 280289294299308310\begin{array} { l l l l l l l } \text { time } t \text { (minutes) } & 1 & 2 & 3 & 4 & 5 & 6 \\\text { distance (miles) } & 280 & 289 & 294 & 299 & 308 & 310\end{array}
Using a least squares fit to the data,extrapolate to the nearest tenth of a minute when the jet will be 345 miles away?

A)10.4 minutes
B)13.7 minutes
C)12.9 minutes
D)11.5 minutes
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
9
Given the following points in the plane,find the y-intercept of the least squares line to two decimal places: (3,3),(5,5),(7,8),and (9,8)

A)-0.90
B)-1.50
C)0.60
D)0.72
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
10
Compute fxf _ { x } for f(x,y)=e8xyf ( x , y ) = e ^ { 8 x y }

A) 8xye8xy8 x y e ^ { 8 x y }
B) 8ye8x8 y e ^ { 8 x }
C) 8xe8xy8 x e ^ { 8 x y }
D) 8e8xy8 e ^ { 8 x y }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
11
Compute f (6,0)if f(x,y)=xeyf ( x , y ) = \frac { x } { e ^ { y } } .

A)Undefined
B)6
C)0
D) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
12
Compute fyf _ { y } for f(x,y)=7xy6f ( x , y ) = 7 x y ^ { 6 }

A) 7y67 y ^ { 6 }
B) 42xy5+7y642 x y ^ { 5 } + 7 y ^ { 6 }
C)7x
D) 42xy542 x y ^ { 5 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
13
A manufacturer is planning to sell a new product at the price of $230 per unit and estimates that if x thousand dollars is spent on development and y thousand dollars is spent on promotion,approximately 340yy+7+170xx+14\frac { 340 y } { y + 7 } + \frac { 170 x } { x + 14 } units of the product will be sold.The cost of manufacturing the product is $160 per unit.If the manufacturer has a total of $340,000 to spend on development and promotion,how should this money be allocated to generate the largest possible profit? [Hint: Profit equals (number of units)(price per unit minus cost per unit)minus total amount spent on development and promotion.]

A)$173,500 on development,$167,000 on promotion
B)$167,000 on development,$173,000 on promotion
C)$166,500 on development,$173,500 on promotion
D)$173,000 on development,$167,000 on promotion
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
14
Find the maximum value of the function f (x,y,z)= 7x + 8y + 6z on the sphere x2+y2+z2=596x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 596 .

A)298
B)894
C)1,043.0
D)149
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
15
At a certain factory,the output Q is related to inputs x and y by the expression Q(x,y)=2x3+2x2y4+9y5Q ( x , y ) = 2 x ^ { 3 } + 2 x ^ { 2 } y ^ { 4 } + 9 y ^ { 5 } .If 0 \leq x \leq 8 and 0 \leq y \leq 10,what is the average output of the factory? (Approximate to 2 decimal places.)

A)111,504.00 units
B)235,589.33 units
C)235,590.13 units
D)308,341.33 units
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
16
Use Lagrange multipliers to find the maximum value of f (x,y)= 9xy subject to the constraint 9x + 3y = 27.

A)f (0,0)= 0
B)f (3,9)= 243
C) f(34,94)=24316f \left( \frac { 3 } { 4 } , \frac { 9 } { 4 } \right) = \frac { 243 } { 16 }
D) f(32,92)=2434f \left( \frac { 3 } { 2 } , \frac { 9 } { 2 } \right) = \frac { 243 } { 4 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
17
Evaluate the following double integral: 4744x4y7dydx\int _ { - 4 } ^ { 7 } \int _ { - 4 } ^ { 4 } x ^ { 4 } y ^ { 7 } d y d x

A)4
B)The integral can't be evaluated.
C) 14\frac { 1 } { 4 }
D)0
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
18
The following data shows the age and income for a small number of people.
 Age (years) 2432395460 Incomes ($) 30,00034,00053,00072,00081,000\begin{array} { r l l l l l } \text { Age (years) } & 24 & 32 & 39 & 54 & 60 \\\text { Incomes (\$) } & 30,000 & 34,000 & 53,000 & 72,000 & 81,000\end{array}
Find the best fit straight line of this data,rounding coefficients and constants to the nearest whole number.Let x represent age and y represent income.

A)y = 3,830x - 8,036
B)y = 3,106x - 8,048
C)y = 1,484x - 8,041
D)None of the above
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
19
The only grocery store in a small rural community carries two brands of frozen apple juice,a local brand that it obtains at the cost of 18 cents per can and a well-known national brand that it obtains at the cost of 40 cents per can.The grocer estimates that if the local brand is sold for x cents per can and the national brand for y cents per can,approximately 70 - 5x + 4y cans of the local brand and 80 + 6x - 7y cans of the national brand will be sold each day.How should the grocer price each brand to maximize the profit from the sale of the juice?

A)local brand (x)at 39 cents,national brand (y)at 104 cents
B)local brand (x)at 46 cents,national brand (y)at 52 cents
C)local brand (x)at 44 cents,national brand (y)at 52 cents
D)local brand (x)at 88 cents,national brand (y)at 50 cents
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
20
Evaluate the given double integral for the specified region R. R(8x+2y)dA\iint _ { R } ( 8 x + 2 y ) d A ,where R is the triangle with vertices (0,0),(2,0),and (0,1)

A)18
B)12
C) 683\frac { 68 } { 3 }
D) 943\frac { 94 } { 3 }
Unlock Deck
Unlock for access to all 20 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 20 flashcards in this deck.