Deck 9: Linear Programming

Full screen (f)
exit full mode
Question
An example of a decision variable in an LP problem is profit maximization.
Use Space or
up arrow
down arrow
to flip the card.
Question
Every constraint in a maximization problem has a slack variable.
Question
A linear programming problem can have multiple optimal solutions.
Question
The value of an objective function decreases as it is moved away from the origin.
Question
The term "isoprofit" line means that all points on the line will yield the same profit.
Question
Linear programming techniques will produce an optimal solution to problems that involve limitations on resources.
Question
The graphical Solution Method can handle problems that involve any number of decision variables.
Question
The equation 5x + 7y = 10 is linear.
Question
For a nonbinding constraint,if the left side is greater than the right side,we say that there is surplus; if the left side is smaller than the right side,we say that there is slack.
Question
LP problems must have a single goal or objective specified.
Question
Constraints limit the alternatives available to a decision-maker.
Question
The feasible solution space is the set of all feasible combinations of decision variables as defined by only binding constraints.
Question
If a single optimal solution exists to a graphical LP problem,it will exist at a corner point.
Question
A maximization problem may be characterized by all greater than or equal to constraints.
Question
A change in the value of an objective function coefficient does not change the optimal solution.
Question
The simplex method is an LP algorithm that can solve problems having more than two decision variables.
Question
The removal of a redundant constraint does not affect the feasible solution space.
Question
The feasible solution space only contains points that satisfy all constraints.
Question
The equation 3xy = 9 is linear.
Question
An objective function represents a family of parallel lines.
Question
The region which satisfies all of the constraints in linear programming is called the:

A)optimum solution space.
B)region of optimality.
C)profit maximization space.
D)region of non-negativity.
E)feasible solution space.
Question
In the range of feasibility,the value of the shadow price remains constant.
Question
Every change in the value of an objective function coefficient will lead to a changed optimal solution.
Question
The linear optimization technique for allocating constrained resources among different products is:

A)linear regression analysis.
B)linear disaggregation.
C)linear decomposition.
D)linear programming.
E)linear tracking analysis.
Question
A shadow price indicates how much a one-unit decrease/increase in the right-hand side value of a constraint will decrease/increase the optimal value of the objective function.
Question
Which of the following is not a necessary assumption in order for a linear programming model to be used effectively?

A)Linearity
B)Exponentiality
C)Divisibility
D)Certainty
E)Non-negativity
Question
In graphical linear programming the objective function is:

A)linear,one equation based,a family of its profit lines
B)a family of parallel lines,linear,both linear and nonlinear
C)a family of is profit lines,linear on the right,nonlinear on the left
D)a family of is profit lines,a family of parallel lines,nonlinear
E)linear,a family of parallel lines,a family of is profit lines
Question
The logical approach,from beginning to end,for assembling a linear programming model begins with:

A)identifying the decision variables.
B)identifying the objective function.
C)specifying the objective function parameters.
D)identifying the constraints.
E)specifying the constraint parameters.
Question
Which objective function has the same slope as this one: $4x + $2y = $20?

A)$4x + $2y = $10
B)$2x + $4y = $20
C)$2x - $4y = $20
D)$4x - $2y = $20
E)$8x + $8y = $20
Question
Which of the following is not written in the standard form of a linear programming problem constraint?

A)1A + 2B \ge 3
B)1A + 2B \le 3
C)1A + 2B = 3
D)1A + 2B + 3C + 4D \le 5
E)2A \le 3B
Question
What combination of x and y will yield the optimum solution for this problem? Maximize Z = $3x + $15y; Subject to: (1)2x + 4y \le 12 (2)5x + 2y \le 10

A)x = 2,y = 0
B)x = 0,y = 0
C)x = 0,y = 3
D)x = 1,y = 5
E)x = 1,y = 3
Question
For the products A,B,C,and D,which of the following could be a linear programming objective function?

A)Z = 1A + 2B + 3C + 4D
B)Z = 1A + 2BC + 3D
C)Z = 1A + 2AB + 3ABC + 4ABCD
D)Z = 1A + 2B/C + 3D
Question
Which of the choices below constitutes a simultaneous solution to these equations? (1)3x + 2y = 6 and (2)6x + 3y = 12

A)x = 1,y = 1.5
B)x = .5,y = 2
C)x = 0,y = 3
D)x = 2,y = 0
E)x = 0,y = 0
Question
In the graphical solution method for minimization problems,we find the optimal corner point by sliding the objective function line (which is an isocost line)toward the origin instead of away from it.
Question
Which of the choices below constitutes a simultaneous solution to these equations? (1)3x + 4y = 10 and (2)5x + 4y = 14

A)x = 2,y = .5
B)x = 4,y = -.5
C)x = 2,y = 1
D)x = y
E)y = 2x
Question
The term "range of optimality" refers to a range of values for an objective function coefficient over which the optimal solution values of the decision variables remain the same.
Question
For the constraints given below,which point is in the feasible solution space of this maximization problem? (1)14x + 6y \le 42
(2)x - y \le 3

A)x = 1,y = 5
B)x = -1,y = 1
C)x = 4,y = 4
D)x = 2,y = 1
E)x = 2,y = 8
Question
The term "range of feasibility" refers to coefficients of the objective function.
Question
When a change in the value of an objective function coefficient remains within the range of optimality,the optimal solution would also remain the same.
Question
Which of the following is not a component of the structure of a linear programming model?

A)Constraints
B)Decision variables
C)Environment of certainty
D)A goal or objective
E)Parameters
Question
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.What is the time constraint?

A)2 L + 3 D \le 480
B)2 L + 4 D \le 480
C)3 L + 2 D \le 480
D)4 L + 2 D \le 480
E)5 L + 3 D \le 480
Question
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.What are optimal daily profits?

A)$0
B)$240
C)$420
D)$405
E)$505
Question
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.What is the objective function?

A)Z = $2 L + $3 D
B)Z = $2 L + $4 D
C)Z = $3 L + $2 D
D)Z = $4 L + $2 D
E)Z = $5 L + $3 D
Question
In the graphical method of linear programming,when the objective function is parallel to one of the constraints,then:

A)the solution is suboptimal.
B)multiple optimal solutions exist.
C)a single corner point solution exists.
D)no feasible solution exists.
E)the constraints need to be changed
Question
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.Using the graphical method,what are optimal weekly profits?

A)$0
B)$400
C)$700
D)$800
E)$900
Question
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.Which of the following is not a feasible production combination?

A)0 L & 0 D
B)0 L & 120 D
C)90 L & 75 D
D)135 L & 0 D
E)135 L & 120 D
Question
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.For the production combination of 0 American and 400 British,which resource is "slack" (not fully used)?

A)Colombian beans (only)
B)Dominican beans (only)
C)Both Colombian beans and Dominican beans
D)Neither Colombian beans nor Dominican beans
E)Cannot be determined exactly
Question
The theoretical limit on the number of decision variables that can be handled by the simplex method in a single problem is:

A)1
B)2
C)3
D)4
E)unlimited.
Question
What is the linear programming approach where substituting the coordinates of each corner point into the objective function determines the corner point which is optimal?

A)redundant constraints
B)binding constraints
C)surplus
D)slack constraints
E)enumeration
Question
In linear programming,sensitivity analysis is associated with:

A)A constraint that forms the optimal corner point of the feasible solution space.
B)Substituting the coordinates of each corner point into the objective function to determine which corner point is optimal.
C)Assessing the impact of potential changes of the parameters (numerical values)of an LP model on its optimal solution.
D)A constraint that does not form a unique boundary of the feasible solution space.
E)Representing the requirements or limitations that restrict the available choices.
Question
Which graphical solution method finds the optimal corner point by sliding the objective function line (which is an isocost line)toward the origin instead of away from it?

A)surplus
B)slack
C)maximization
D)minimization
E)simplex
Question
For the constraints given below,which point is in the feasible solution space of this minimization problem? (1)14x + 6y > 42 (2)x + 3y > 6

A)x = 0.5,y = 5.0
B)x = 0.0,y = 4.0
C)x = 2.0,y = 5.0
D)x = 1.0,y = 2.0
E)x = 2.0,y = 1.0
Question
A shadow price reflects which of the following in a maximization problem?

A)The marginal cost of adding additional resources
B)The marginal gain in the objective that would be realized by adding one unit of a resource
C)The net gain in the objective that would be realized by adding one unit of a resource
D)The marginal gain in the objective that would be realized by subtracting one unit of a resource
E)Assessing the impact of potential changes of the parameters (numerical values)of an LP model on its optimal solution.
Question
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.Which of the following is not a feasible production combination?

A)0 A & 0 B
B)0 A & 400 B
C)200 A & 300 B
D)400 A & 0 B
E)400 A & 400 B
Question
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.What is the Dominican bean constraint?

A)12A + 8B \le 4,800
B)8A + 12B \le 4,800
C)4A + 8B \le 3,200
D)8A + 4B \le 3,200
E)4A + 8B \le 4,800
Question
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.For the production combination of 135 Lite and 0 Dark,which resource is "slack" (not fully used)?

A)Time (only)
B)Malt extract (only)
C)Both time and malt extract
D)Neither time nor malt extract
E)Cannot be determined exactly
Question
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.What is the objective function?

A)Z = $1 A + $2 B
B)Z = $12 A + $8 B
C)Z = $2 A + $1 B
D)Z = $8 A + $12 B
E)Z = $4 A + $8 B
Question
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Colombia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.What is the Colombian bean constraint?

A)1 A + 2 B \le 4,800
B)12 A + 8 B \le 4,800
C)2 A + 1 B \le 4,800
D)8 A + 12 B \le 4,800
E)4 A + 8 B \le 4,800
Question
What combination of x and y will provide a minimum for this problem? Minimize Z = $3x + $15y; Subject to: (1)2x + 4y > 12 (2)5x + 2y > 10

A)x = 0,y = 0
B)x = 0,y = 3
C)x = 0,y = 5
D)x = 1,y = 2.5
E)x = 6,y = 0
Question
A constraint that does not form a unique boundary of the feasible solution space is a:

A)redundant constraint.
B)binding constraint.
C)non-binding constraint.
D)feasible solution constraint.
E)variable constraint
Question
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.What is the constraint for sugar?

A)2 D + 3 C \le 4,800
B)6 D + 8 C \le 4,800
C)1 D + 2 C \le 4,800
D)3 D + 2 C \le 4,800
E)4 D + 5 C \le 4,800
Question
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.What is the objective function?

A)Z = $4 R + $6 S
B)Z = $2 R + $3 S
C)Z = $6 R + $4 S
D)Z = $3 R + $2 S
E)Z = $5 R + $5 S
Question
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.What are optimal weekly profits?

A)$10,000
B)$4,600
C)$2,500
D)$5,200
E)$6,400
Question
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.For the production combination of 1,400 A-100's and 900 B-200's,which resource is "slack" (not fully used)?

A)Circuit boards (only)
B)Assembly time (only)
C)Both circuit boards and assembly time
D)Neither circuit boards nor assembly time
E)Cannot be determined exactly
Question
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.What is the assembly time constraint (in hours)?

A)1 A + 1 B \le 800
B)0.25 A + 0.5 B \le 800
C)0.5 A + 0.25 B \le 800
D)1 A + 0.5 B \le 800
E)0.25 A + 1 B \le 800
Question
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.For the production combination of 180 Root beer and 0 Sassafras sodas,which resource is "slack" (not fully used)?

A)Production time (only)
B)Carbonated water (only)
C)Both production time and carbonated water
D)Neither production time nor carbonated water
E)Cannot be determined exactly
Question
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.What is the objective function?

A)Z = $4.00 A + $1.00 B
B)Z = $0.25 A + $1.00 B
C)Z = $1.00 A + $4.00 B
D)Z = $1.00 A + $1.00 B
E)Z = $0.25 A + $0.50 B
Question
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.Using the graphical method,what are optimal daily profits?

A)$960
B)$1,560
C)$1,800
D)$1,900
E)$2,520
Question
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.Which of the following is not a feasible production/sales combination?

A)0 A & 0 B
B)0 A & 1,000 B
C)1,800 A & 700 B
D)2,500 A & 0 B
E)100 A & 1,600 B
Question
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.What is the objective function?

A)Z = $0.30 B + $0.20 C
B)Z = $0.60 B + $0.30 C
C)Z = $0.20 B + $0.30 C
D)Z = $0.20 B + $0.40 C
E)Z = $0.10 B + $0.10 C
Question
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.Which of the following is not a feasible production combination?

A)0 D & 0 C
B)0 D & 1,000 C
C)800 D & 600 C
D)1,600 D & 0 C
E)0 D & 1,200 C
Question
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.Using the graphical method,what are optimal profits for today's production run?

A)$580
B)$340
C)$220
D)$380
E)$420
Question
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.What is the production time constraint (in minutes)?

A)2 R + 3 S \le 720
B)2 R + 5 S \le 720
C)3 R + 2 S \le 720
D)3 R + 5 S \le 720
E)5 R + 5 S \le 720
Question
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.What is the sugar constraint (in tablespoons)?

A)6 B + 3 C \le 4,800
B)1 B + 1 C \le 4,800
C)2 B + 4 C \le 4,800
D)4 B + 2 C \le 4,800
E)2 B + 3 C \le 4,800
Question
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.Using the graphical method,what are profits for the optimal production combination?

A)$800
B)$500
C)$640
D)$620
E)$600
Question
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.Which of the following is not a feasible production combination?

A)0 B & 0 C
B)0 B & 1,100 C
C)800 B & 600 C
D)1,100 B & 0 C
E)0 B & 1,400 C
Question
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.Which of the following is not a feasible production combination?

A)0 R & 0 S
B)0 R & 240 S
C)180 R & 120 S
D)300 R & 0 S
E)180 R & 240 S
Question
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.For the production combination of 800 boxes of Deluxe and 600 boxes of Classic,which resource is slack (not fully used)?

A)Sugar (only)
B)Flour (only)
C)Salt (only)
D)Sugar and flour
E)Sugar and salt
Question
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.What is the objective function?

A)Z = $0.50 D + $0.40 C
B)Z = $0.20 D + $0.30 C
C)Z = $0.40 D + $0.50 C
D)Z = $0.10 D + $0.20 C
E)Z = $0.60 D + $0.80 C
Question
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.For the production combination of 600 bagels and 800 croissants,which resource is "slack" (not fully used)?

A)Flour (only)
B)Sugar (only)
C)Flour and yeast
D)Flour and sugar
E)Yeast and sugar
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/98
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Linear Programming
1
An example of a decision variable in an LP problem is profit maximization.
False
2
Every constraint in a maximization problem has a slack variable.
False
3
A linear programming problem can have multiple optimal solutions.
True
4
The value of an objective function decreases as it is moved away from the origin.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
5
The term "isoprofit" line means that all points on the line will yield the same profit.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
6
Linear programming techniques will produce an optimal solution to problems that involve limitations on resources.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
7
The graphical Solution Method can handle problems that involve any number of decision variables.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
8
The equation 5x + 7y = 10 is linear.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
9
For a nonbinding constraint,if the left side is greater than the right side,we say that there is surplus; if the left side is smaller than the right side,we say that there is slack.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
10
LP problems must have a single goal or objective specified.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
11
Constraints limit the alternatives available to a decision-maker.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
12
The feasible solution space is the set of all feasible combinations of decision variables as defined by only binding constraints.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
13
If a single optimal solution exists to a graphical LP problem,it will exist at a corner point.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
14
A maximization problem may be characterized by all greater than or equal to constraints.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
15
A change in the value of an objective function coefficient does not change the optimal solution.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
16
The simplex method is an LP algorithm that can solve problems having more than two decision variables.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
17
The removal of a redundant constraint does not affect the feasible solution space.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
18
The feasible solution space only contains points that satisfy all constraints.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
19
The equation 3xy = 9 is linear.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
20
An objective function represents a family of parallel lines.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
21
The region which satisfies all of the constraints in linear programming is called the:

A)optimum solution space.
B)region of optimality.
C)profit maximization space.
D)region of non-negativity.
E)feasible solution space.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
22
In the range of feasibility,the value of the shadow price remains constant.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
23
Every change in the value of an objective function coefficient will lead to a changed optimal solution.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
24
The linear optimization technique for allocating constrained resources among different products is:

A)linear regression analysis.
B)linear disaggregation.
C)linear decomposition.
D)linear programming.
E)linear tracking analysis.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
25
A shadow price indicates how much a one-unit decrease/increase in the right-hand side value of a constraint will decrease/increase the optimal value of the objective function.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
26
Which of the following is not a necessary assumption in order for a linear programming model to be used effectively?

A)Linearity
B)Exponentiality
C)Divisibility
D)Certainty
E)Non-negativity
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
27
In graphical linear programming the objective function is:

A)linear,one equation based,a family of its profit lines
B)a family of parallel lines,linear,both linear and nonlinear
C)a family of is profit lines,linear on the right,nonlinear on the left
D)a family of is profit lines,a family of parallel lines,nonlinear
E)linear,a family of parallel lines,a family of is profit lines
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
28
The logical approach,from beginning to end,for assembling a linear programming model begins with:

A)identifying the decision variables.
B)identifying the objective function.
C)specifying the objective function parameters.
D)identifying the constraints.
E)specifying the constraint parameters.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
29
Which objective function has the same slope as this one: $4x + $2y = $20?

A)$4x + $2y = $10
B)$2x + $4y = $20
C)$2x - $4y = $20
D)$4x - $2y = $20
E)$8x + $8y = $20
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
30
Which of the following is not written in the standard form of a linear programming problem constraint?

A)1A + 2B \ge 3
B)1A + 2B \le 3
C)1A + 2B = 3
D)1A + 2B + 3C + 4D \le 5
E)2A \le 3B
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
31
What combination of x and y will yield the optimum solution for this problem? Maximize Z = $3x + $15y; Subject to: (1)2x + 4y \le 12 (2)5x + 2y \le 10

A)x = 2,y = 0
B)x = 0,y = 0
C)x = 0,y = 3
D)x = 1,y = 5
E)x = 1,y = 3
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
32
For the products A,B,C,and D,which of the following could be a linear programming objective function?

A)Z = 1A + 2B + 3C + 4D
B)Z = 1A + 2BC + 3D
C)Z = 1A + 2AB + 3ABC + 4ABCD
D)Z = 1A + 2B/C + 3D
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
33
Which of the choices below constitutes a simultaneous solution to these equations? (1)3x + 2y = 6 and (2)6x + 3y = 12

A)x = 1,y = 1.5
B)x = .5,y = 2
C)x = 0,y = 3
D)x = 2,y = 0
E)x = 0,y = 0
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
34
In the graphical solution method for minimization problems,we find the optimal corner point by sliding the objective function line (which is an isocost line)toward the origin instead of away from it.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
35
Which of the choices below constitutes a simultaneous solution to these equations? (1)3x + 4y = 10 and (2)5x + 4y = 14

A)x = 2,y = .5
B)x = 4,y = -.5
C)x = 2,y = 1
D)x = y
E)y = 2x
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
36
The term "range of optimality" refers to a range of values for an objective function coefficient over which the optimal solution values of the decision variables remain the same.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
37
For the constraints given below,which point is in the feasible solution space of this maximization problem? (1)14x + 6y \le 42
(2)x - y \le 3

A)x = 1,y = 5
B)x = -1,y = 1
C)x = 4,y = 4
D)x = 2,y = 1
E)x = 2,y = 8
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
38
The term "range of feasibility" refers to coefficients of the objective function.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
39
When a change in the value of an objective function coefficient remains within the range of optimality,the optimal solution would also remain the same.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
40
Which of the following is not a component of the structure of a linear programming model?

A)Constraints
B)Decision variables
C)Environment of certainty
D)A goal or objective
E)Parameters
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
41
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.What is the time constraint?

A)2 L + 3 D \le 480
B)2 L + 4 D \le 480
C)3 L + 2 D \le 480
D)4 L + 2 D \le 480
E)5 L + 3 D \le 480
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
42
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.What are optimal daily profits?

A)$0
B)$240
C)$420
D)$405
E)$505
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
43
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.What is the objective function?

A)Z = $2 L + $3 D
B)Z = $2 L + $4 D
C)Z = $3 L + $2 D
D)Z = $4 L + $2 D
E)Z = $5 L + $3 D
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
44
In the graphical method of linear programming,when the objective function is parallel to one of the constraints,then:

A)the solution is suboptimal.
B)multiple optimal solutions exist.
C)a single corner point solution exists.
D)no feasible solution exists.
E)the constraints need to be changed
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
45
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.Using the graphical method,what are optimal weekly profits?

A)$0
B)$400
C)$700
D)$800
E)$900
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
46
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.Which of the following is not a feasible production combination?

A)0 L & 0 D
B)0 L & 120 D
C)90 L & 75 D
D)135 L & 0 D
E)135 L & 120 D
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
47
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.For the production combination of 0 American and 400 British,which resource is "slack" (not fully used)?

A)Colombian beans (only)
B)Dominican beans (only)
C)Both Colombian beans and Dominican beans
D)Neither Colombian beans nor Dominican beans
E)Cannot be determined exactly
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
48
The theoretical limit on the number of decision variables that can be handled by the simplex method in a single problem is:

A)1
B)2
C)3
D)4
E)unlimited.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
49
What is the linear programming approach where substituting the coordinates of each corner point into the objective function determines the corner point which is optimal?

A)redundant constraints
B)binding constraints
C)surplus
D)slack constraints
E)enumeration
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
50
In linear programming,sensitivity analysis is associated with:

A)A constraint that forms the optimal corner point of the feasible solution space.
B)Substituting the coordinates of each corner point into the objective function to determine which corner point is optimal.
C)Assessing the impact of potential changes of the parameters (numerical values)of an LP model on its optimal solution.
D)A constraint that does not form a unique boundary of the feasible solution space.
E)Representing the requirements or limitations that restrict the available choices.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
51
Which graphical solution method finds the optimal corner point by sliding the objective function line (which is an isocost line)toward the origin instead of away from it?

A)surplus
B)slack
C)maximization
D)minimization
E)simplex
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
52
For the constraints given below,which point is in the feasible solution space of this minimization problem? (1)14x + 6y > 42 (2)x + 3y > 6

A)x = 0.5,y = 5.0
B)x = 0.0,y = 4.0
C)x = 2.0,y = 5.0
D)x = 1.0,y = 2.0
E)x = 2.0,y = 1.0
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
53
A shadow price reflects which of the following in a maximization problem?

A)The marginal cost of adding additional resources
B)The marginal gain in the objective that would be realized by adding one unit of a resource
C)The net gain in the objective that would be realized by adding one unit of a resource
D)The marginal gain in the objective that would be realized by subtracting one unit of a resource
E)Assessing the impact of potential changes of the parameters (numerical values)of an LP model on its optimal solution.
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
54
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.Which of the following is not a feasible production combination?

A)0 A & 0 B
B)0 A & 400 B
C)200 A & 300 B
D)400 A & 0 B
E)400 A & 400 B
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
55
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.What is the Dominican bean constraint?

A)12A + 8B \le 4,800
B)8A + 12B \le 4,800
C)4A + 8B \le 3,200
D)8A + 4B \le 3,200
E)4A + 8B \le 4,800
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
56
The operations manager for the Blue Moon Brewing Co.produces two beers: Lite (L)and Dark (D).Two of his resources are constrained: production time,which is limited to 8 hours (480 minutes)per day; and malt extract (one of his ingredients),of which he can get only 675 gallons each day.To produce a keg of Lite beer requires 2 minutes of time and 5 gallons of malt extract,while each keg of Dark beer needs 4 minutes of time and 3 gallons of malt extract.Profits for Lite beer are $3.00 per keg,and profits for Dark beer are $2.00 per keg.For the production combination of 135 Lite and 0 Dark,which resource is "slack" (not fully used)?

A)Time (only)
B)Malt extract (only)
C)Both time and malt extract
D)Neither time nor malt extract
E)Cannot be determined exactly
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
57
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Columbia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.What is the objective function?

A)Z = $1 A + $2 B
B)Z = $12 A + $8 B
C)Z = $2 A + $1 B
D)Z = $8 A + $12 B
E)Z = $4 A + $8 B
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
58
The production planner for Fine Coffees,Inc.produces two coffee blends: American (A)and British (B).Two of his resources are constrained: Colombia beans,of which he can get at most 300 pounds (4,800 ounces)per week; and Dominican beans,of which he can get at most 200 pounds (3,200 ounces)per week.Each pound of American blend coffee requires 12 ounces of Colombian beans and 4 ounces of Dominican beans; while a pound of British blend coffee uses 8 ounces of each type of bean.Profits for the American blend are $2.00 per pound,and profits for the British blend are $1.00 per pound.What is the Colombian bean constraint?

A)1 A + 2 B \le 4,800
B)12 A + 8 B \le 4,800
C)2 A + 1 B \le 4,800
D)8 A + 12 B \le 4,800
E)4 A + 8 B \le 4,800
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
59
What combination of x and y will provide a minimum for this problem? Minimize Z = $3x + $15y; Subject to: (1)2x + 4y > 12 (2)5x + 2y > 10

A)x = 0,y = 0
B)x = 0,y = 3
C)x = 0,y = 5
D)x = 1,y = 2.5
E)x = 6,y = 0
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
60
A constraint that does not form a unique boundary of the feasible solution space is a:

A)redundant constraint.
B)binding constraint.
C)non-binding constraint.
D)feasible solution constraint.
E)variable constraint
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
61
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.What is the constraint for sugar?

A)2 D + 3 C \le 4,800
B)6 D + 8 C \le 4,800
C)1 D + 2 C \le 4,800
D)3 D + 2 C \le 4,800
E)4 D + 5 C \le 4,800
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
62
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.What is the objective function?

A)Z = $4 R + $6 S
B)Z = $2 R + $3 S
C)Z = $6 R + $4 S
D)Z = $3 R + $2 S
E)Z = $5 R + $5 S
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
63
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.What are optimal weekly profits?

A)$10,000
B)$4,600
C)$2,500
D)$5,200
E)$6,400
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
64
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.For the production combination of 1,400 A-100's and 900 B-200's,which resource is "slack" (not fully used)?

A)Circuit boards (only)
B)Assembly time (only)
C)Both circuit boards and assembly time
D)Neither circuit boards nor assembly time
E)Cannot be determined exactly
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
65
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.What is the assembly time constraint (in hours)?

A)1 A + 1 B \le 800
B)0.25 A + 0.5 B \le 800
C)0.5 A + 0.25 B \le 800
D)1 A + 0.5 B \le 800
E)0.25 A + 1 B \le 800
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
66
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.For the production combination of 180 Root beer and 0 Sassafras sodas,which resource is "slack" (not fully used)?

A)Production time (only)
B)Carbonated water (only)
C)Both production time and carbonated water
D)Neither production time nor carbonated water
E)Cannot be determined exactly
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
67
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.What is the objective function?

A)Z = $4.00 A + $1.00 B
B)Z = $0.25 A + $1.00 B
C)Z = $1.00 A + $4.00 B
D)Z = $1.00 A + $1.00 B
E)Z = $0.25 A + $0.50 B
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
68
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.Using the graphical method,what are optimal daily profits?

A)$960
B)$1,560
C)$1,800
D)$1,900
E)$2,520
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
69
An electronics firm produces two models of pocket calculators: the A-100 (A),which is an inexpensive four-function calculator,and the B-200 (B),which also features square root and percent functions.Each model uses one (the same)circuit board,of which there are only 2,500 available for this week's production.Also,the company has allocated a maximum of 800 hours of assembly time this week for producing these calculators,of which the A-100 requires 15 minutes (.25 hours)each,and the B-200 requires 30 minutes (.5 hours)each to produce.The firm forecasts that it could sell a maximum of 4,000 A-100's this week and a maximum of 1,000 B-200's.Profits for the A-100 are $1.00 each,and profits for the B-200 are $4.00 each.Which of the following is not a feasible production/sales combination?

A)0 A & 0 B
B)0 A & 1,000 B
C)1,800 A & 700 B
D)2,500 A & 0 B
E)100 A & 1,600 B
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
70
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.What is the objective function?

A)Z = $0.30 B + $0.20 C
B)Z = $0.60 B + $0.30 C
C)Z = $0.20 B + $0.30 C
D)Z = $0.20 B + $0.40 C
E)Z = $0.10 B + $0.10 C
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
71
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.Which of the following is not a feasible production combination?

A)0 D & 0 C
B)0 D & 1,000 C
C)800 D & 600 C
D)1,600 D & 0 C
E)0 D & 1,200 C
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
72
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.Using the graphical method,what are optimal profits for today's production run?

A)$580
B)$340
C)$220
D)$380
E)$420
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
73
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.What is the production time constraint (in minutes)?

A)2 R + 3 S \le 720
B)2 R + 5 S \le 720
C)3 R + 2 S \le 720
D)3 R + 5 S \le 720
E)5 R + 5 S \le 720
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
74
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.What is the sugar constraint (in tablespoons)?

A)6 B + 3 C \le 4,800
B)1 B + 1 C \le 4,800
C)2 B + 4 C \le 4,800
D)4 B + 2 C \le 4,800
E)2 B + 3 C \le 4,800
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
75
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.Using the graphical method,what are profits for the optimal production combination?

A)$800
B)$500
C)$640
D)$620
E)$600
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
76
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.Which of the following is not a feasible production combination?

A)0 B & 0 C
B)0 B & 1,100 C
C)800 B & 600 C
D)1,100 B & 0 C
E)0 B & 1,400 C
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
77
The production planner for a private label soft drink maker is planning the production of two soft drinks: root beer (R)and sassafras soda (S).Two resources are constrained: production time (T),of which she has at most 12 hours per day; and carbonated water (W),of which she can get at most 1500 gallons per day.A case of root beer requires 2 minutes of time and 5 gallons of water to produce,while a case of sassafras soda requires 3 minutes of time and 5 gallons of water.Profits for the root beer are $6.00 per case,and profits for the sassafras soda are $4.00 per case.Which of the following is not a feasible production combination?

A)0 R & 0 S
B)0 R & 240 S
C)180 R & 120 S
D)300 R & 0 S
E)180 R & 240 S
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
78
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.For the production combination of 800 boxes of Deluxe and 600 boxes of Classic,which resource is slack (not fully used)?

A)Sugar (only)
B)Flour (only)
C)Salt (only)
D)Sugar and flour
E)Sugar and salt
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
79
The owner of Crackers,Inc.produces two kinds of crackers: Deluxe (D)and Classic (C).She has a limited amount of the three ingredients used to produce these crackers available for her next production run: 4,800 ounces of sugar; 9,600 ounces of flour,and 2,000 ounces of salt.A box of Deluxe crackers requires 2 ounces of sugar,6 ounces of flour,and 1 ounce of salt to produce; while a box of Classic crackers requires 3 ounces of sugar,8 ounces of flour,and 2 ounces of salt.Profits for a box of Deluxe crackers are $0.40; and for a box of Classic crackers,$0.50.What is the objective function?

A)Z = $0.50 D + $0.40 C
B)Z = $0.20 D + $0.30 C
C)Z = $0.40 D + $0.50 C
D)Z = $0.10 D + $0.20 C
E)Z = $0.60 D + $0.80 C
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
80
A local bagel shop produces two products: bagels (B)and croissants (C).Each bagel requires 6 ounces of flour,1 gram of yeast,and 2 tablespoons of sugar.A croissant requires 3 ounces of flour,1 gram of yeast,and 4 tablespoons of sugar.The company has 6,600 ounces of flour,1,400 grams of yeast,and 4,800 tablespoons of sugar available for today's production run.Bagel profits are 20 cents each,and croissant profits are 30 cents each.For the production combination of 600 bagels and 800 croissants,which resource is "slack" (not fully used)?

A)Flour (only)
B)Sugar (only)
C)Flour and yeast
D)Flour and sugar
E)Yeast and sugar
Unlock Deck
Unlock for access to all 98 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 98 flashcards in this deck.