Deck 39:Vectors and Dot Products

Full screen (f)
exit full mode
Question
Use the vectors u=3,5\mathbf { u } = \langle 3,5 \rangle , v=2,4\mathbf { v } = \langle - 2,4 \rangle ,and w=3,4\mathbf { w } = \langle 3 , - 4 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (v.u)w\left( \mathbf { v } ^ \mathbf{ . } \mathbf { u } \right) \mathbf { w }

A) 42,60\langle 42 , - 60 \rangle ;vector
B) 42,56\langle 42 , - 56 \rangle ;vector
C)-58;scalar
D)-56;scalar
E) 42,52\langle 42 , - 52 \rangle ;vector
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the vectors u=2,2\mathbf { u } = \langle 2,2 \rangle , v=2,2\mathbf { v } = \langle - 2,2 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ 3uv3 \mathbf { u } \cdot \mathbf { v }

A) 0,2\langle 0,2 \rangle ;vector
B)-2;scalar
C)2;scalar
D) 4,4\langle 4 , - 4 \rangle ;vector
E)0;scalar
Question
Find the dot product of u and v.​ u=6i4jv=ij\begin{array} { l } \mathbf { u } = 6 \mathbf { i } - 4 \mathbf { j } \\\mathbf { v } = \mathbf { i } - \mathbf { j }\end{array}

A)14
B)6
C)12
D)10
E)8
Question
Find the dot product of u and v.​ u=6i+4jv=8i2j\begin{array} { l } \mathbf { u } = 6 \mathbf { i } + 4 \mathbf { j } \\\mathbf { v } = 8 \mathbf { i } - 2 \mathbf { j }\end{array}

A)36
B)40
C)44
D)42
E)38
Question
Use the dot product to find the magnitude of u.​ u=35i+40j\mathbf { u } = 35 \mathbf { i } + 40 \mathbf { j }

A)40
B) 2829\sqrt { 2829 }
C) 2823\sqrt { 2823 }
D) 51135 \sqrt { 113 }
E)35
Question
Find the dot product of u and v.​ u=5,1v=2,4\begin{array} { l } \mathbf { u } = \langle 5,1 \rangle \\\mathbf { v } = \langle - 2,4 \rangle\end{array}

A)-10
B)-8
C)-4
D)-6
E)-2
Question
Use the dot product to find the magnitude of u. ​​ u=7,12\mathbf { u } = \langle - 7,12 \rangle

A) 3213 \sqrt { 21 }
B) 195\sqrt { 195 }
C) 197\sqrt { 197 }
D) 193\sqrt { 193 }
E) 191\sqrt { 191 }
Question
Use the vectors u=2,4\mathbf { u } = \langle 2,4 \rangle , v=4,5\mathbf { v } = \langle - 4,5 \rangle ,and w=5,4\mathbf { w } = \langle 5 , - 4 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (u2v)w( \mathbf { u } \cdot 2 \mathbf { v } ) \mathbf { w }

A)-96;scalar
B) 120,92\langle 120 , - 92 \rangle ;vector
C) 120,94\langle 120 , - 94 \rangle ;vector
D) 120,100\langle 120 , - 100 \rangle ;vector
E) 120,96\langle 120 , - 96 \rangle ;vector
Question
Find the dot product of u and v.​ u=6,14v=2,2\begin{array} { l } \mathbf { u } = \langle 6,14 \rangle \\\mathbf { v } = \langle - 2,2 \rangle\end{array}

A)18
B)14
C)20
D)12
E)16
Question
Use the dot product to find the magnitude of u.​ u=2,9\mathbf { u } = \langle 2 , - 9 \rangle

A) 89\sqrt { 89 }
B) 83\sqrt { 83 }
C) 85\sqrt { 85 }
D) 99
E) 87\sqrt { 87 }
Question
Use the dot product to find the magnitude of u.​ u=4j\mathbf { u } = 4 \mathbf { j }

A)5
B)6
C)4
D)7
E)8
Question
Use the vectors u=3,5\mathbf { u } = \langle 3,5 \rangle , v=2,2\mathbf { v } = \langle - 2,2 \rangle ,and w=5,3\mathbf { w } = \langle 5 , - 3 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (3wv)u( 3 \mathbf { w } \cdot \mathbf { v } ) \mathbf { u }

A) 144,236\langle - 144 , - 236 \rangle ;vector
B) 144,242\langle - 144 , - 242 \rangle ;vector
C) 144,240\langle - 144 , - 240 \rangle ;vector
D)-240;scalar
E) 144,244\langle - 144 , - 244 \rangle ;vector
Question
Use the vectors u=4,5\mathbf { u } = \langle 4,5 \rangle , v=6,5\mathbf { v } = \langle - 6,5 \rangle ,and w=6,4\mathbf { w } = \langle 6 , - 4 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ uvuw\langle \mathbf { u } \cdot \mathbf { v } \rangle - \langle \mathbf { u } \cdot \mathbf { w } \rangle

A)-1;scalar
B) 1,7\langle 1 , - 7 \rangle ;vector
C) 3,3\langle - 3 , - 3 \rangle ;vector
D)-3;scalar
E)-5;scalar
Question
Use the vectors u=2,4\mathbf { u } = \langle 2,4 \rangle , v=5,3\mathbf { v } = \langle - 5,3 \rangle and w=3,1\mathbf { w } = \langle 3 , - 1 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (v.u)(w.v)\left( \mathbf { v } ^ { . } \mathbf { u } \right) - \left( \mathbf { w } ^ { . } \mathbf { v } \right)

A)16;scalar
B) 24,16\langle 24,16 \rangle ;vector
C) 0,20\langle 0,20 \rangle ;vector
D)22;scalar
E)20;scalar
Question
Find the angle θ\theta between the vectors.​ u=4,0v=0,3\begin{array} { l } \mathbf { u } = \langle 4,0 \rangle \\\mathbf { v } = \langle 0 , - 3 \rangle\end{array} ​ (Round the answer to 1 decimal place. )

A) 3030 ^ { \circ }
B) 110110 ^ { \circ }
C) 7070 ^ { \circ }
D) 105105 ^ { \circ }
E) 9090 ^ { \circ }
Question
Find the dot product of u and v.​ u=7,1v=4,5\begin{array} { l } \mathbf { u } = \langle - 7,1 \rangle \\\mathbf { v } = \langle 4 , - 5 \rangle\end{array}

A)-31
B)-29
C)-33
D)-37
E)-35
Question
Find the dot product of u and v.​ u=4,9v=2,5\begin{array} { l } \mathbf { u } = \langle - 4,9 \rangle \\\mathbf { v } = \langle - 2 , - 5 \rangle\end{array}

A)-41
B)-33
C)-37
D)-35
E)-39
Question
Use the dot product to find the magnitude of u.​ u=24i28j\mathbf { u } = 24 \mathbf { i } - 28 \mathbf { j }

A) 4854 \sqrt { 85 }
B) 1358\sqrt { 1358 }
C) 23392 \sqrt { 339 }
D) 1362\sqrt { 1362 }
E) 23412 \sqrt { 341 }
Question
Use the vectors u=3,6\mathbf { u } = \langle 3,6 \rangle , v=6,5\mathbf { v } = \langle - 6,5 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (uv)v( \mathbf { u } \cdot \mathbf { v } ) \mathbf { v }

A) 72,60\langle - 72,60 \rangle ;vector
B) 72,64\langle - 72,64 \rangle ;vector
C)-72;scalar
D)60;scalar
E) 72,58\langle - 72,58 \rangle ;vector
Question
Use the vector u=3,2\mathbf { u } = \langle 3,2 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ u.u\mathbf { u } ^\mathbf{.}\mathbf { u } ^ { }

A) 13,15\langle 13,15 \rangle ;vector
B)15;scalar
C)13;scalar
D)11;scalar
E) 17,9\langle 17,9 \rangle ;vector
Question
Given vectors u=u1,u2\mathbf { u } = \left\langle u _ { 1 } , u _ { 2 } \right\rangle , v=v1,v2\mathbf { v } = \left\langle v _ { 1 } , v _ { 2 } \right\rangle and w=w1,w2\mathbf { w } = \left\langle w _ { 1 } , w _ { 2 } \right\rangle determine whether the result of the following expression is a vector or a scalar. 6w3w6 w \cdot 3 w

A)vector
B)scalar
Question
Given vectors u=2,3\mathbf { u } = \langle - 2 , - 3 \rangle and v=1,3v = \langle 1,3 \rangle determine the quantity indicated below. u2v\mathbf { u } \cdot 2 \mathbf { v }

A)18
B)-20
C)-22
D)0
E)-6
Question
Given u=3,2\mathbf { u } = \langle 3 , - 2 \rangle and v=1,3\mathbf { v } = \langle 1 , - 3 \rangle ,find uvu\cdot v .

A)3
B)-3
C)-7
D)9
E)-11
Question
Find the angle θ between the vectors. ​​ u=7i8jv=9i+2j\begin{array} { l } \mathbf { u } = - 7 \mathbf { i } - 8 \mathbf { j } \\\mathbf { v } = - 9 \mathbf { i } + 2 \mathbf { j }\end{array}
(Round the answer to 2 decimal places. )

A) 71.3471.34 ^ { \circ }
B) 66.3466.34 ^ { \circ }
C) 61.3461.34 ^ { \circ }
D) 81.3481.34 ^ { \circ }
E) 76.3476.34 ^ { \circ }
Question
Find the angle between the vectors u and v if u=3,3\mathbf { u } = \langle 3 , - 3 \rangle ,and v=1,1\mathbf { v } = \langle 1 , - 1 \rangle Round your answer to two decimal places.

A)1.41°
B)0.00°
C)-1.24°
D)-1.93°
E)0.96°
Question
Use the dot product to find the magnitude of u if u=6,2\mathbf { u } = \langle 6 , - 2 \rangle

A) u=4\| \mathbf { u } \| = 4
B) u=12\| \mathbf { u } \| = 12
C) u=20\| \mathbf { u } \| = 20
D) u=\| \mathbf { u } \| = 4104 \sqrt { 10 }
E)​ u=\| \mathbf { u } \| = 2102 \sqrt { 10 }
Question
Find the projection of u onto v.​ u=3,6v=4,6\begin{array} { l } \mathbf { u } = \langle 3,6 \rangle \\\mathbf { v } = \langle 4,6 \rangle\end{array}

A) 1372,4813 \langle 72,48 \rangle
B) 1133,4\frac { 1 } { 13 } \langle 3,4 \rangle
C) 131248,72\frac { 13 } { 12 } \langle 48,72 \rangle
D) 11348,72\frac { 1 } { 13 } \langle 48,72 \rangle
E) 121348,72\frac { 12 } { 13 } \langle 48,72 \rangle
Question
Given vectors u=1,2\mathbf { u } = \langle - 1 , - 2 \rangle and v=3,5\mathbf { v } = \langle 3,5 \rangle determine the quantity indicated below. (4u2v)u( 4 \mathbf { u } \cdot 2 \mathbf { v } ) \mathbf { u }

A) 32,64\langle 32,64 \rangle
B) 104,208\langle 104,208 \rangle
C) 8,16\langle - 8 , - 16 \rangle
D) 8,16\langle 8,16 \rangle
E) 64,128\langle - 64 , - 128 \rangle
Question
A force of y=50y = 50 pounds exerted at an angle of 3030 ^ { \circ } above the horizontal is required to slide a table across a floor (see figure).The table is dragged x=12x = 12 feet.Determine the work done in sliding the table.​  <strong>A force of  y = 50  pounds exerted at an angle of  30 ^ { \circ }  above the horizontal is required to slide a table across a floor (see figure).The table is dragged  x = 12  feet.Determine the work done in sliding the table.​   ​</strong> A)539.6 ft-lb B)599.6 ft-lb C)519.6 ft-lb D)579.6 ft-lb E)559.6 ft-lb <div style=padding-top: 35px>

A)539.6 ft-lb
B)599.6 ft-lb
C)519.6 ft-lb
D)579.6 ft-lb
E)559.6 ft-lb
Question
Determine the work done by a crane lifting a 2,800-pound car 7 feet.

A)19,600 ft-lb
B)19,620 ft-lb
C)19,610 ft-lb
D)19,640 ft-lb
E)19,630 ft-lb
Question
Find the projection of u onto v.​ u=5,5v=5,1\begin{array} { l } \mathbf { u } = \langle - 5 , - 5 \rangle \\\mathbf { v } = \langle - 5 , - 1 \rangle\end{array}

A) 11375,15\frac { 1 } { 13 } \langle - 75 , - 15 \rangle
B) 1315,7513 \langle - 15 , - 75 \rangle
C) 1135,5\frac { 1 } { 13 } \langle - 5 , - 5 \rangle
D) 131575,15\frac { 13 } { 15 } \langle - 75 , - 15 \rangle
E) 151375,15\frac { 15 } { 13 } \langle - 75 , - 15 \rangle
Question
Determine the work done by a person lifting a 240-newton bag of sugar 2 meters.

A)510 N-m
B)480 N-m
C)520 N-m
D)500 N-m
E)490 N-m
Question
Find the angle between the vectors u and v if u=3i2j\mathbf { u } = 3 \mathbf { i } - 2 \mathbf { j } and u=3i+2j\mathbf { u } = 3 \mathbf { i } + 2 \mathbf { j } Round your answer to two decimal places.

A)66.14°
B)68.34°
C)67.38°
D)65.45°
E)68.79°
Question
A tractor pulls a log 900 meters,and the tension in the cable connecting the tractor and log is approximately 16,691 newtons.The direction of the force is 3535 ^ { \circ } above the horizontal.Approximate the work done in pulling the log. ​
(Round the answer to two decimal places. )

A)12,305,260.09 N-m
B)12,305,220.09 N-m
C)12,305,300.09 N-m
D)12,305,280.090 N-m
E)12,305,240.09 N-m
Question
Use the dot product to find the magnitude of u if u=3i+6j\mathbf { u } = - 3 \mathbf { i } + 6 \mathbf { j }

A) u=18\| \mathbf { u } \| = 18
B) u=\| \mathbf { u } \| = 656 \sqrt { 5 }
C) u=18\| \mathbf { u } \| = 18 .
D)​ u=\| \mathbf { u } \| = 353 \sqrt { 5 }
E) u=23\| \mathbf { u } \| = 23
Question
Find the angle θ between the vectors.​ u=6,2v=7,0\begin{array} { l } \mathbf { u } = \langle 6,2 \rangle \\\mathbf { v } = \langle 7,0 \rangle\end{array} ​ (Round the answer to 2 decimal places. )

A) 18.4318.43 ^ { \circ }
B) 33.4333.43 ^ { \circ }
C) 23.4323.43 ^ { \circ }
D) 28.4328.43 ^ { \circ }
E) 38.4338.43 ^ { \circ }
Question
Find the projection of u onto v.​ u=0,4v=3,20\begin{array} { l } \mathbf { u } = \langle 0,4 \rangle \\\mathbf { v } = \langle 3,20 \rangle\end{array}

A) 14090,3\frac { 1 } { 409 } \langle 0,3 \rangle
B) 4091600,240409 \langle 1600,240 \rangle
C) 80409240,1600\frac { 80 } { 409 } \langle 240,1600 \rangle
D) 40980240,1600\frac { 409 } { 80 } \langle 240,1600 \rangle
E) 1409240,1600\frac { 1 } { 409 } \langle 240,1600 \rangle
Question
Given u=3i+2j\mathbf { u } = - 3 \mathbf { i } + 2 \mathbf { j } and u=4ij\mathbf { u } = 4 \mathbf { i } - \mathbf { j } ,find uvu\cdot v .

A)-10
B)-14
C)11
D)-5
E)-12
Question
Find the angle θ between the vectors. ​​ u=6i1jv=7i+2j\begin{array} { l } \mathbf { u } = 6 \mathbf { i } - 1 \mathbf { j } \\\mathbf { v } = 7 \mathbf { i } + 2 \mathbf { j }\end{array}
(Round the answer to 2 decimal places. )

A) 25.4125.41 ^ { \circ }
B) 45.4145.41 ^ { \circ }
C) 30.4130.41 ^ { \circ }
D) 35.4135.41 ^ { \circ }
E) 40.4140.41 ^ { \circ }
Question
Find the projection of u onto v.Then write u as the sum of two orthogonal vectors,one of which is projvu\operatorname { proj } _ { \mathrm { v } } \mathbf { u } .​ ​​ u=30,5\mathbf { u } = \langle 30,5 \rangle v=1,6\mathbf { v } = \langle 1 , - 6 \rangle

A)​ 0,0,30,5\langle 0,0 \rangle , \langle - 30,5 \rangle
B)​ 0,0,30,5\langle 0,0 \rangle , \langle 30,5 \rangle
C)​ 0,0,1,6\langle 0,0 \rangle , \langle - 1 , - 6 \rangle
D)​ 0,0,30,5\langle 0,0 \rangle , \langle 30 , - 5 \rangle
E)​ 0,0,1,6\langle 0,0 \rangle , \langle 1 , - 6 \rangle
Question
A 475-pound trailer is sitting on an exit ramp inclined at 32° on Highway 35.How much force is required to keep the trailer from rolling back down the exit ramp? Round your answer to two decimal places.

A)383.93 pounds
B)365.05 pounds
C)402.82 pounds
D)327.27 pounds
E)251.71 pounds
Question
Determine whether u are v and orthogonal,parallel,or neither. u=1,5,v=10,3\mathbf { u } = \langle - 1,5 \rangle , \mathbf { v } = \langle - 10 , - 3 \rangle

A)neither
B)orthogonal
C)parallel
Question
Given u=i+3j\mathbf { u } = - \mathbf { i } + 3 \mathbf { j } and v=5i+4j\mathbf { v } = 5 \mathbf { i } + 4 \mathbf { j } ,find u.vu^.v

A)7
B)-5
C)-17
D)11
E)-19
Question
A force of 45 pounds is exerted along a rope attached to a crate at an angle of 30° above the horizontal.The crate is moved 31 feet horizontally.How much work has been accomplished? Round your answer to one decimal place.

A)1,301.6 foot-pounds
B)1,395.0 foot-pounds
C)1,610.8 foot-pounds
D)1,208.1 foot-pounds
E)1,456.2 foot-pounds
Question
Determine whether u are v and orthogonal,parallel,or neither. u=43,32,v=16,18\mathbf { u } = \left\langle \frac { - 4 } { 3 } , \frac { 3 } { 2 } \right\rangle , \mathbf { v } = \langle 16 , - 18 \rangle

A)neither
B)parallel
C)orthogonal
Question
Find the angle between the vectors u and v. u=cos(π3)i+sin(π3)j\mathbf { u } = \cos \left( \frac { \pi } { 3 } \right) \mathbf { i } + \sin \left( \frac { \pi } { 3 } \right) \mathbf { j } , v=cos(3π4)i+sin(3π4)jv = \cos \left( \frac { 3 \pi } { 4 } \right) i + \sin \left( \frac { 3 \pi } { 4 } \right) j

A) 4040 ^ { \circ }
B) 1515 ^ { \circ }
C) 7575 ^ { \circ }
D) 105105 ^ { \circ }
E) 7070 ^ { \circ }
Question
Determine u.vu^.v if u=5,v=6\| \mathbf { u } \| = 5 , \| \mathbf { v } \| = 6 ,and θ=π3\theta = \frac { \pi } { 3 } where θ is the angle between u and v.Round answer to two decimal places.

A)21.21
B)20.49
C)15.00
D)18.11
E)25.98
Question
Use vectors to find the measure of the angle at vertex B of triangle ABC,when A=(5,4)A = ( 5,4 ) , B=(2,4)B = ( - 2,4 ) ,and C=(3,4)C = ( - 3 , - 4 ) .Round answer to two decimal places.

A)95.94°
B)98.47°
C)97.13°
D)95.04°
E)99.65°
Question
Use the dot product to find the magnitude of u if u=5i2j\mathbf { u } = - 5 \mathbf { i } - 2 \mathbf { j }

A) u=\| \mathbf { u } \| = 10
B) u=\| \mathbf { u } \| = 2292 \sqrt { 29 }
C) u=7\| \mathbf { u } \| = 7
D) u=15\| \mathbf { u } \| = 15
E) u=\| \mathbf { u } \| = 29\sqrt { 29 }
Question
The vector u=3900,4000\mathbf { u } = \langle 3900,4000 \rangle gives the number of units of two models of laptops produced by a company.The vector u=1450,1000\mathbf { u } = \langle 1450,1000 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Identify the vector operation used to increase revenue by 6%.

A)​1.06(u + v)
B)1.06 u.v\left\| \mathbf { u } ^ { . } \mathbf { v } \right\|
C) u.(1.06)v\mathbf { u } ^. ( 1.06 ) \| \mathbf { v } \|
D)1.06 (u.v)\left( \mathbf { u } ^ { . } \mathbf { v } \right)
E)1.06 u.v\| \mathbf { u } \| ^ { . } \mathbf { v }
Question
Use the dot product to find the magnitude of u if u=3,2\mathbf { u } = \langle 3,2 \rangle

A) u=\| \mathbf { u } \| = 2132 \sqrt { 13 }
B) u=\| \mathbf { u } \| = 13\sqrt { 13 }
C) u=6\| \mathbf { u } \| = 6
D) u=5\| \mathbf { u } \| = 5
E) u=7\| \mathbf { u } \| = 7
Question
Given vectors u=1,3\mathbf { u } = \langle - 1,3 \rangle and v=1,4\mathbf { v } = \langle 1,4 \rangle determine the quantity indicated below. 2u4v- 2 \mathbf { u }{ \cdot}- 4 \mathbf { v }

A)-48
B)-56
C)-46
D)88
E)20
Question
The vector u=2700,4700\mathbf { u } = \langle 2700,4700 \rangle gives the number of units of two models of laptops produced by a company.The vector v=1200,900\mathbf { v } = \langle 1200,900 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Use dot products to determine the revenue for these two laptops if the price of each is increased by 6%.

A)$7,664,400
B)$7,791,300
C)$7,918,200
D)$7,723,800
E)$7,768,800
Question
Find the angle between the vectors u and v.​ u=cos(π3)i+sin(π3)j\mathbf { u } = \cos \left( \frac { \pi } { 3 } \right) \mathbf { i } + \sin \left( \frac { \pi } { 3 } \right) \mathbf { j } , v=cos(5π4)i+sin(5π4)j\mathbf { v } = \cos \left( \frac { 5 \pi } { 4 } \right) \mathbf { i } + \sin \left( \frac { 5 \pi } { 4 } \right) \mathbf { j }

A) 4040 ^ { \circ }
B) 7575 ^ { \circ }
C) 105105 ^ { \circ }
D) 165165 ^ { \circ }
E) 175175 ^ { \circ }
Question
Find the projection of u onto v if u=5,3\mathbf { u } = \langle 5 , - 3 \rangle , v=1,4\mathbf { v } = \langle - 1,4 \rangle . ​

A)​ 171717,511717\left\langle \frac { - 17 \sqrt { 17 } } { 17 } , \frac { 51 \sqrt { 17 } } { 17 } \right\rangle
B)​ 171717,681717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { 68 \sqrt { 17 } } { 17 } \right\rangle
C)​ 171717,171717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { 17 \sqrt { 17 } } { 17 } \right\rangle
D)​ 171717,681717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { - 68 \sqrt { 17 } } { 17 } \right\rangle
E)​ 171717,511717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { 51 \sqrt { 17 } } { 17 } \right\rangle
Question
Use vectors to find the measure of the angle at vertex B of triangle ABC,when A=(5,1)A = ( 5,1 ) , B=(5,1)B = ( - 5,1 ) ,and C=(3,5)C = ( - 3 , - 5 ) .Round answer to two decimal places.

A)69.48°
B)71.57°
C)72.91°
D)70.38°
E)74.09°
Question
Find the angle between the vectors u and v if u=3,4\mathbf { u } = \langle 3,4 \rangle ,and v=1,2\mathbf { v } = \langle - 1 , - 2 \rangle Round answer to two decimal places.

A)167.77°
B)168.46°
C)169.70°
D)170.66°
E)171.11°
Question
Find the angle between the vectors u and v if u=i+2j\mathbf { u } = \mathbf { i } + 2 \mathbf { j } and v=4i+2j\mathbf { v } = 4 \mathbf { i } + 2 \mathbf { j } Round answer to two decimal places.

A)36.87°
B)37.83°
C)38.28°
D)34.94°
E)35.63°
Question
Determine u.vu.v if u=5\| \mathbf { u } \| = 5 , v=4\| \mathbf { v } \| = 4 ,and θ=π4\theta = \frac { \pi } { 4 } where θ is the angle between u and v.Round answer to two decimal places.

A)15.73
B)12.07
C)10.00
D)17.32
E)14.14
Question
Given u=5,6\mathbf { u } = \langle - 5 , - 6 \rangle and v=6,5\mathbf { v } = \langle - 6 , - 5 \rangle ,find u.vu^.v .

A)0
B)30
C)60
D)61
E)-11
Question
Determine whether u are v and orthogonal,parallel,or neither. u=13,52\mathbf { u } = \left\langle \frac { 1 } { 3 } , \frac { 5 } { 2 } \right\rangle , v=4,30\mathbf { v } = \langle - 4 , - 30 \rangle

A)orthogonal
B)parallel
C)neither
Question
Determine whether u are v and orthogonal,parallel,or neither. u=4,7,v=14,24\mathbf { u } = \langle - 4 , - 7 \rangle , \mathbf { v } = \langle 14,24 \rangle

A)orthogonal
B)parallel
C)neither
Question
Find the projection of u onto v if , u=4,2\mathbf { u } = \langle 4,2 \rangle , v=5,2\mathbf { v } = \langle 5 , - 2 \rangle . ​

A)​ 8029,3229\left\langle \frac { 80 } { \sqrt { 29 } } , \frac { 32 } { \sqrt { 29 } } \right\rangle
B)​ 6429,8029\left\langle \frac { 64 } { \sqrt { 29 } } , \frac { 80 } { \sqrt { 29 } } \right\rangle
C)​ 6429,3229\left\langle \frac { 64 } { \sqrt { 29 } } , \frac { 32 } { \sqrt { 29 } } \right\rangle
D)​ 6429,3229\left\langle \frac { 64 } { \sqrt { 29 } } , - \frac { 32 } { \sqrt { 29 } } \right\rangle
E)​ 8029,3229\left\langle \frac { 80 } { \sqrt { 29 } } , - \frac { 32 } { \sqrt { 29 } } \right\rangle
Question
​Find the projection of u onto v if , u=5,4\mathbf { u } = \langle - 5 , - 4 \rangle , v=2,5\mathbf { v } = \langle 2 , - 5 \rangle .

A)​ 202929,502929\left\langle \frac { 20 \sqrt { 29 } } { 29 } , - \frac { 50 \sqrt { 29 } } { 29 } \right\rangle
B)​ 502929,502929\left\langle - \frac { 50 \sqrt { 29 } } { 29 } , - \frac { 50 \sqrt { 29 } } { 29 } \right\rangle
C)​ 502929,402929\left\langle - \frac { 50 \sqrt { 29 } } { 29 } , - \frac { 40 \sqrt { 29 } } { 29 } \right\rangle
D)​ 202929,402929\left\langle - \frac { 20 \sqrt { 29 } } { 29 } , - \frac { 40 \sqrt { 29 } } { 29 } \right\rangle
E)​ 502929,202929\left\langle - \frac { 50 \sqrt { 29 } } { 29 } , \frac { 20 \sqrt { 29 } } { 29 } \right\rangle
Question
The vector u=2500,3000\mathbf { u } = \langle 2500,3000 \rangle gives the number of units of two models of laptops produced by a company.The vector v=2000,1000\mathbf { v } = \langle 2000,1000 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Use dot products to determine the revenue for these two laptops if the price of each is increased by 3.5%.

A)$8,186,667
B)$8,175,000
C)$8,280,000
D)$8,227,500
E)$8,105,000
Question
The vector u=3800,5400\mathbf { u } = \langle 3800,5400 \rangle gives the number of units of two models of laptops produced by a company.The vector v=1350,1000\mathbf { v } = \langle 1350,1000 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Identify the vector operation used to increase revenue by 3.5%.

A) u(1.035)v\mathbf { u } \cdot ( 1.035 ) \| \mathbf { v } \|
B) 1.035(uv)1.035 ( \mathbf { u } \cdot \mathbf { v } )
C) 1.035u.v1.035 \left\| \mathbf { u } ^ { . } \mathbf { v } \right\|
D) 1.035uv1.035 \| \mathbf { u } \| \cdot \mathbf { v }
E) 1.035(u+v)1.035 ( \mathbf { u } + \mathbf { v } )
Question
Find the projection of u onto v if u=4,5\mathbf { u } = \langle 4 , - 5 \rangle , v=3,1\mathbf { v } = \langle 3 , - 1 \rangle

A)​ 5110,1710\left\langle \frac { 51 } { \sqrt { 10 } } , \frac { - 17 } { \sqrt { 10 } } \right\rangle
B)​ 5110,1710\left\langle \frac { - 51 } { \sqrt { 10 } } , \frac { - 17 } { \sqrt { 10 } } \right\rangle
C)​ 5110,5110\left\langle \frac { 51 } { \sqrt { 10 } } , \frac { - 51 } { \sqrt { 10 } } \right\rangle
D)​ 1710,1710\left\langle \frac { 17 } { \sqrt { 10 } } , \frac { - 17 } { \sqrt { 10 } } \right\rangle
E)​ 1710,1710\left\langle \frac { 17 } { \sqrt { 10 } } , \frac { 17 } { \sqrt { 10 } } \right\rangle
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/67
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 39:Vectors and Dot Products
1
Use the vectors u=3,5\mathbf { u } = \langle 3,5 \rangle , v=2,4\mathbf { v } = \langle - 2,4 \rangle ,and w=3,4\mathbf { w } = \langle 3 , - 4 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (v.u)w\left( \mathbf { v } ^ \mathbf{ . } \mathbf { u } \right) \mathbf { w }

A) 42,60\langle 42 , - 60 \rangle ;vector
B) 42,56\langle 42 , - 56 \rangle ;vector
C)-58;scalar
D)-56;scalar
E) 42,52\langle 42 , - 52 \rangle ;vector
42,56\langle 42 , - 56 \rangle ;vector
2
Use the vectors u=2,2\mathbf { u } = \langle 2,2 \rangle , v=2,2\mathbf { v } = \langle - 2,2 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ 3uv3 \mathbf { u } \cdot \mathbf { v }

A) 0,2\langle 0,2 \rangle ;vector
B)-2;scalar
C)2;scalar
D) 4,4\langle 4 , - 4 \rangle ;vector
E)0;scalar
0;scalar
3
Find the dot product of u and v.​ u=6i4jv=ij\begin{array} { l } \mathbf { u } = 6 \mathbf { i } - 4 \mathbf { j } \\\mathbf { v } = \mathbf { i } - \mathbf { j }\end{array}

A)14
B)6
C)12
D)10
E)8
10
4
Find the dot product of u and v.​ u=6i+4jv=8i2j\begin{array} { l } \mathbf { u } = 6 \mathbf { i } + 4 \mathbf { j } \\\mathbf { v } = 8 \mathbf { i } - 2 \mathbf { j }\end{array}

A)36
B)40
C)44
D)42
E)38
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
5
Use the dot product to find the magnitude of u.​ u=35i+40j\mathbf { u } = 35 \mathbf { i } + 40 \mathbf { j }

A)40
B) 2829\sqrt { 2829 }
C) 2823\sqrt { 2823 }
D) 51135 \sqrt { 113 }
E)35
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
6
Find the dot product of u and v.​ u=5,1v=2,4\begin{array} { l } \mathbf { u } = \langle 5,1 \rangle \\\mathbf { v } = \langle - 2,4 \rangle\end{array}

A)-10
B)-8
C)-4
D)-6
E)-2
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
7
Use the dot product to find the magnitude of u. ​​ u=7,12\mathbf { u } = \langle - 7,12 \rangle

A) 3213 \sqrt { 21 }
B) 195\sqrt { 195 }
C) 197\sqrt { 197 }
D) 193\sqrt { 193 }
E) 191\sqrt { 191 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
8
Use the vectors u=2,4\mathbf { u } = \langle 2,4 \rangle , v=4,5\mathbf { v } = \langle - 4,5 \rangle ,and w=5,4\mathbf { w } = \langle 5 , - 4 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (u2v)w( \mathbf { u } \cdot 2 \mathbf { v } ) \mathbf { w }

A)-96;scalar
B) 120,92\langle 120 , - 92 \rangle ;vector
C) 120,94\langle 120 , - 94 \rangle ;vector
D) 120,100\langle 120 , - 100 \rangle ;vector
E) 120,96\langle 120 , - 96 \rangle ;vector
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
9
Find the dot product of u and v.​ u=6,14v=2,2\begin{array} { l } \mathbf { u } = \langle 6,14 \rangle \\\mathbf { v } = \langle - 2,2 \rangle\end{array}

A)18
B)14
C)20
D)12
E)16
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
10
Use the dot product to find the magnitude of u.​ u=2,9\mathbf { u } = \langle 2 , - 9 \rangle

A) 89\sqrt { 89 }
B) 83\sqrt { 83 }
C) 85\sqrt { 85 }
D) 99
E) 87\sqrt { 87 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
11
Use the dot product to find the magnitude of u.​ u=4j\mathbf { u } = 4 \mathbf { j }

A)5
B)6
C)4
D)7
E)8
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
12
Use the vectors u=3,5\mathbf { u } = \langle 3,5 \rangle , v=2,2\mathbf { v } = \langle - 2,2 \rangle ,and w=5,3\mathbf { w } = \langle 5 , - 3 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (3wv)u( 3 \mathbf { w } \cdot \mathbf { v } ) \mathbf { u }

A) 144,236\langle - 144 , - 236 \rangle ;vector
B) 144,242\langle - 144 , - 242 \rangle ;vector
C) 144,240\langle - 144 , - 240 \rangle ;vector
D)-240;scalar
E) 144,244\langle - 144 , - 244 \rangle ;vector
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
13
Use the vectors u=4,5\mathbf { u } = \langle 4,5 \rangle , v=6,5\mathbf { v } = \langle - 6,5 \rangle ,and w=6,4\mathbf { w } = \langle 6 , - 4 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ uvuw\langle \mathbf { u } \cdot \mathbf { v } \rangle - \langle \mathbf { u } \cdot \mathbf { w } \rangle

A)-1;scalar
B) 1,7\langle 1 , - 7 \rangle ;vector
C) 3,3\langle - 3 , - 3 \rangle ;vector
D)-3;scalar
E)-5;scalar
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
14
Use the vectors u=2,4\mathbf { u } = \langle 2,4 \rangle , v=5,3\mathbf { v } = \langle - 5,3 \rangle and w=3,1\mathbf { w } = \langle 3 , - 1 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (v.u)(w.v)\left( \mathbf { v } ^ { . } \mathbf { u } \right) - \left( \mathbf { w } ^ { . } \mathbf { v } \right)

A)16;scalar
B) 24,16\langle 24,16 \rangle ;vector
C) 0,20\langle 0,20 \rangle ;vector
D)22;scalar
E)20;scalar
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
15
Find the angle θ\theta between the vectors.​ u=4,0v=0,3\begin{array} { l } \mathbf { u } = \langle 4,0 \rangle \\\mathbf { v } = \langle 0 , - 3 \rangle\end{array} ​ (Round the answer to 1 decimal place. )

A) 3030 ^ { \circ }
B) 110110 ^ { \circ }
C) 7070 ^ { \circ }
D) 105105 ^ { \circ }
E) 9090 ^ { \circ }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
16
Find the dot product of u and v.​ u=7,1v=4,5\begin{array} { l } \mathbf { u } = \langle - 7,1 \rangle \\\mathbf { v } = \langle 4 , - 5 \rangle\end{array}

A)-31
B)-29
C)-33
D)-37
E)-35
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
17
Find the dot product of u and v.​ u=4,9v=2,5\begin{array} { l } \mathbf { u } = \langle - 4,9 \rangle \\\mathbf { v } = \langle - 2 , - 5 \rangle\end{array}

A)-41
B)-33
C)-37
D)-35
E)-39
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
18
Use the dot product to find the magnitude of u.​ u=24i28j\mathbf { u } = 24 \mathbf { i } - 28 \mathbf { j }

A) 4854 \sqrt { 85 }
B) 1358\sqrt { 1358 }
C) 23392 \sqrt { 339 }
D) 1362\sqrt { 1362 }
E) 23412 \sqrt { 341 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
19
Use the vectors u=3,6\mathbf { u } = \langle 3,6 \rangle , v=6,5\mathbf { v } = \langle - 6,5 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ (uv)v( \mathbf { u } \cdot \mathbf { v } ) \mathbf { v }

A) 72,60\langle - 72,60 \rangle ;vector
B) 72,64\langle - 72,64 \rangle ;vector
C)-72;scalar
D)60;scalar
E) 72,58\langle - 72,58 \rangle ;vector
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
20
Use the vector u=3,2\mathbf { u } = \langle 3,2 \rangle to find the indicated quantity.State whether the result is a vector or a scalar.​ u.u\mathbf { u } ^\mathbf{.}\mathbf { u } ^ { }

A) 13,15\langle 13,15 \rangle ;vector
B)15;scalar
C)13;scalar
D)11;scalar
E) 17,9\langle 17,9 \rangle ;vector
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
21
Given vectors u=u1,u2\mathbf { u } = \left\langle u _ { 1 } , u _ { 2 } \right\rangle , v=v1,v2\mathbf { v } = \left\langle v _ { 1 } , v _ { 2 } \right\rangle and w=w1,w2\mathbf { w } = \left\langle w _ { 1 } , w _ { 2 } \right\rangle determine whether the result of the following expression is a vector or a scalar. 6w3w6 w \cdot 3 w

A)vector
B)scalar
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
22
Given vectors u=2,3\mathbf { u } = \langle - 2 , - 3 \rangle and v=1,3v = \langle 1,3 \rangle determine the quantity indicated below. u2v\mathbf { u } \cdot 2 \mathbf { v }

A)18
B)-20
C)-22
D)0
E)-6
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
23
Given u=3,2\mathbf { u } = \langle 3 , - 2 \rangle and v=1,3\mathbf { v } = \langle 1 , - 3 \rangle ,find uvu\cdot v .

A)3
B)-3
C)-7
D)9
E)-11
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
24
Find the angle θ between the vectors. ​​ u=7i8jv=9i+2j\begin{array} { l } \mathbf { u } = - 7 \mathbf { i } - 8 \mathbf { j } \\\mathbf { v } = - 9 \mathbf { i } + 2 \mathbf { j }\end{array}
(Round the answer to 2 decimal places. )

A) 71.3471.34 ^ { \circ }
B) 66.3466.34 ^ { \circ }
C) 61.3461.34 ^ { \circ }
D) 81.3481.34 ^ { \circ }
E) 76.3476.34 ^ { \circ }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
25
Find the angle between the vectors u and v if u=3,3\mathbf { u } = \langle 3 , - 3 \rangle ,and v=1,1\mathbf { v } = \langle 1 , - 1 \rangle Round your answer to two decimal places.

A)1.41°
B)0.00°
C)-1.24°
D)-1.93°
E)0.96°
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
26
Use the dot product to find the magnitude of u if u=6,2\mathbf { u } = \langle 6 , - 2 \rangle

A) u=4\| \mathbf { u } \| = 4
B) u=12\| \mathbf { u } \| = 12
C) u=20\| \mathbf { u } \| = 20
D) u=\| \mathbf { u } \| = 4104 \sqrt { 10 }
E)​ u=\| \mathbf { u } \| = 2102 \sqrt { 10 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
27
Find the projection of u onto v.​ u=3,6v=4,6\begin{array} { l } \mathbf { u } = \langle 3,6 \rangle \\\mathbf { v } = \langle 4,6 \rangle\end{array}

A) 1372,4813 \langle 72,48 \rangle
B) 1133,4\frac { 1 } { 13 } \langle 3,4 \rangle
C) 131248,72\frac { 13 } { 12 } \langle 48,72 \rangle
D) 11348,72\frac { 1 } { 13 } \langle 48,72 \rangle
E) 121348,72\frac { 12 } { 13 } \langle 48,72 \rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
28
Given vectors u=1,2\mathbf { u } = \langle - 1 , - 2 \rangle and v=3,5\mathbf { v } = \langle 3,5 \rangle determine the quantity indicated below. (4u2v)u( 4 \mathbf { u } \cdot 2 \mathbf { v } ) \mathbf { u }

A) 32,64\langle 32,64 \rangle
B) 104,208\langle 104,208 \rangle
C) 8,16\langle - 8 , - 16 \rangle
D) 8,16\langle 8,16 \rangle
E) 64,128\langle - 64 , - 128 \rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
29
A force of y=50y = 50 pounds exerted at an angle of 3030 ^ { \circ } above the horizontal is required to slide a table across a floor (see figure).The table is dragged x=12x = 12 feet.Determine the work done in sliding the table.​  <strong>A force of  y = 50  pounds exerted at an angle of  30 ^ { \circ }  above the horizontal is required to slide a table across a floor (see figure).The table is dragged  x = 12  feet.Determine the work done in sliding the table.​   ​</strong> A)539.6 ft-lb B)599.6 ft-lb C)519.6 ft-lb D)579.6 ft-lb E)559.6 ft-lb

A)539.6 ft-lb
B)599.6 ft-lb
C)519.6 ft-lb
D)579.6 ft-lb
E)559.6 ft-lb
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
30
Determine the work done by a crane lifting a 2,800-pound car 7 feet.

A)19,600 ft-lb
B)19,620 ft-lb
C)19,610 ft-lb
D)19,640 ft-lb
E)19,630 ft-lb
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
31
Find the projection of u onto v.​ u=5,5v=5,1\begin{array} { l } \mathbf { u } = \langle - 5 , - 5 \rangle \\\mathbf { v } = \langle - 5 , - 1 \rangle\end{array}

A) 11375,15\frac { 1 } { 13 } \langle - 75 , - 15 \rangle
B) 1315,7513 \langle - 15 , - 75 \rangle
C) 1135,5\frac { 1 } { 13 } \langle - 5 , - 5 \rangle
D) 131575,15\frac { 13 } { 15 } \langle - 75 , - 15 \rangle
E) 151375,15\frac { 15 } { 13 } \langle - 75 , - 15 \rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
32
Determine the work done by a person lifting a 240-newton bag of sugar 2 meters.

A)510 N-m
B)480 N-m
C)520 N-m
D)500 N-m
E)490 N-m
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
33
Find the angle between the vectors u and v if u=3i2j\mathbf { u } = 3 \mathbf { i } - 2 \mathbf { j } and u=3i+2j\mathbf { u } = 3 \mathbf { i } + 2 \mathbf { j } Round your answer to two decimal places.

A)66.14°
B)68.34°
C)67.38°
D)65.45°
E)68.79°
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
34
A tractor pulls a log 900 meters,and the tension in the cable connecting the tractor and log is approximately 16,691 newtons.The direction of the force is 3535 ^ { \circ } above the horizontal.Approximate the work done in pulling the log. ​
(Round the answer to two decimal places. )

A)12,305,260.09 N-m
B)12,305,220.09 N-m
C)12,305,300.09 N-m
D)12,305,280.090 N-m
E)12,305,240.09 N-m
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
35
Use the dot product to find the magnitude of u if u=3i+6j\mathbf { u } = - 3 \mathbf { i } + 6 \mathbf { j }

A) u=18\| \mathbf { u } \| = 18
B) u=\| \mathbf { u } \| = 656 \sqrt { 5 }
C) u=18\| \mathbf { u } \| = 18 .
D)​ u=\| \mathbf { u } \| = 353 \sqrt { 5 }
E) u=23\| \mathbf { u } \| = 23
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
36
Find the angle θ between the vectors.​ u=6,2v=7,0\begin{array} { l } \mathbf { u } = \langle 6,2 \rangle \\\mathbf { v } = \langle 7,0 \rangle\end{array} ​ (Round the answer to 2 decimal places. )

A) 18.4318.43 ^ { \circ }
B) 33.4333.43 ^ { \circ }
C) 23.4323.43 ^ { \circ }
D) 28.4328.43 ^ { \circ }
E) 38.4338.43 ^ { \circ }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
37
Find the projection of u onto v.​ u=0,4v=3,20\begin{array} { l } \mathbf { u } = \langle 0,4 \rangle \\\mathbf { v } = \langle 3,20 \rangle\end{array}

A) 14090,3\frac { 1 } { 409 } \langle 0,3 \rangle
B) 4091600,240409 \langle 1600,240 \rangle
C) 80409240,1600\frac { 80 } { 409 } \langle 240,1600 \rangle
D) 40980240,1600\frac { 409 } { 80 } \langle 240,1600 \rangle
E) 1409240,1600\frac { 1 } { 409 } \langle 240,1600 \rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
38
Given u=3i+2j\mathbf { u } = - 3 \mathbf { i } + 2 \mathbf { j } and u=4ij\mathbf { u } = 4 \mathbf { i } - \mathbf { j } ,find uvu\cdot v .

A)-10
B)-14
C)11
D)-5
E)-12
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
39
Find the angle θ between the vectors. ​​ u=6i1jv=7i+2j\begin{array} { l } \mathbf { u } = 6 \mathbf { i } - 1 \mathbf { j } \\\mathbf { v } = 7 \mathbf { i } + 2 \mathbf { j }\end{array}
(Round the answer to 2 decimal places. )

A) 25.4125.41 ^ { \circ }
B) 45.4145.41 ^ { \circ }
C) 30.4130.41 ^ { \circ }
D) 35.4135.41 ^ { \circ }
E) 40.4140.41 ^ { \circ }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
40
Find the projection of u onto v.Then write u as the sum of two orthogonal vectors,one of which is projvu\operatorname { proj } _ { \mathrm { v } } \mathbf { u } .​ ​​ u=30,5\mathbf { u } = \langle 30,5 \rangle v=1,6\mathbf { v } = \langle 1 , - 6 \rangle

A)​ 0,0,30,5\langle 0,0 \rangle , \langle - 30,5 \rangle
B)​ 0,0,30,5\langle 0,0 \rangle , \langle 30,5 \rangle
C)​ 0,0,1,6\langle 0,0 \rangle , \langle - 1 , - 6 \rangle
D)​ 0,0,30,5\langle 0,0 \rangle , \langle 30 , - 5 \rangle
E)​ 0,0,1,6\langle 0,0 \rangle , \langle 1 , - 6 \rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
41
A 475-pound trailer is sitting on an exit ramp inclined at 32° on Highway 35.How much force is required to keep the trailer from rolling back down the exit ramp? Round your answer to two decimal places.

A)383.93 pounds
B)365.05 pounds
C)402.82 pounds
D)327.27 pounds
E)251.71 pounds
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
42
Determine whether u are v and orthogonal,parallel,or neither. u=1,5,v=10,3\mathbf { u } = \langle - 1,5 \rangle , \mathbf { v } = \langle - 10 , - 3 \rangle

A)neither
B)orthogonal
C)parallel
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
43
Given u=i+3j\mathbf { u } = - \mathbf { i } + 3 \mathbf { j } and v=5i+4j\mathbf { v } = 5 \mathbf { i } + 4 \mathbf { j } ,find u.vu^.v

A)7
B)-5
C)-17
D)11
E)-19
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
44
A force of 45 pounds is exerted along a rope attached to a crate at an angle of 30° above the horizontal.The crate is moved 31 feet horizontally.How much work has been accomplished? Round your answer to one decimal place.

A)1,301.6 foot-pounds
B)1,395.0 foot-pounds
C)1,610.8 foot-pounds
D)1,208.1 foot-pounds
E)1,456.2 foot-pounds
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
45
Determine whether u are v and orthogonal,parallel,or neither. u=43,32,v=16,18\mathbf { u } = \left\langle \frac { - 4 } { 3 } , \frac { 3 } { 2 } \right\rangle , \mathbf { v } = \langle 16 , - 18 \rangle

A)neither
B)parallel
C)orthogonal
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
46
Find the angle between the vectors u and v. u=cos(π3)i+sin(π3)j\mathbf { u } = \cos \left( \frac { \pi } { 3 } \right) \mathbf { i } + \sin \left( \frac { \pi } { 3 } \right) \mathbf { j } , v=cos(3π4)i+sin(3π4)jv = \cos \left( \frac { 3 \pi } { 4 } \right) i + \sin \left( \frac { 3 \pi } { 4 } \right) j

A) 4040 ^ { \circ }
B) 1515 ^ { \circ }
C) 7575 ^ { \circ }
D) 105105 ^ { \circ }
E) 7070 ^ { \circ }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
47
Determine u.vu^.v if u=5,v=6\| \mathbf { u } \| = 5 , \| \mathbf { v } \| = 6 ,and θ=π3\theta = \frac { \pi } { 3 } where θ is the angle between u and v.Round answer to two decimal places.

A)21.21
B)20.49
C)15.00
D)18.11
E)25.98
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
48
Use vectors to find the measure of the angle at vertex B of triangle ABC,when A=(5,4)A = ( 5,4 ) , B=(2,4)B = ( - 2,4 ) ,and C=(3,4)C = ( - 3 , - 4 ) .Round answer to two decimal places.

A)95.94°
B)98.47°
C)97.13°
D)95.04°
E)99.65°
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
49
Use the dot product to find the magnitude of u if u=5i2j\mathbf { u } = - 5 \mathbf { i } - 2 \mathbf { j }

A) u=\| \mathbf { u } \| = 10
B) u=\| \mathbf { u } \| = 2292 \sqrt { 29 }
C) u=7\| \mathbf { u } \| = 7
D) u=15\| \mathbf { u } \| = 15
E) u=\| \mathbf { u } \| = 29\sqrt { 29 }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
50
The vector u=3900,4000\mathbf { u } = \langle 3900,4000 \rangle gives the number of units of two models of laptops produced by a company.The vector u=1450,1000\mathbf { u } = \langle 1450,1000 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Identify the vector operation used to increase revenue by 6%.

A)​1.06(u + v)
B)1.06 u.v\left\| \mathbf { u } ^ { . } \mathbf { v } \right\|
C) u.(1.06)v\mathbf { u } ^. ( 1.06 ) \| \mathbf { v } \|
D)1.06 (u.v)\left( \mathbf { u } ^ { . } \mathbf { v } \right)
E)1.06 u.v\| \mathbf { u } \| ^ { . } \mathbf { v }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
51
Use the dot product to find the magnitude of u if u=3,2\mathbf { u } = \langle 3,2 \rangle

A) u=\| \mathbf { u } \| = 2132 \sqrt { 13 }
B) u=\| \mathbf { u } \| = 13\sqrt { 13 }
C) u=6\| \mathbf { u } \| = 6
D) u=5\| \mathbf { u } \| = 5
E) u=7\| \mathbf { u } \| = 7
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
52
Given vectors u=1,3\mathbf { u } = \langle - 1,3 \rangle and v=1,4\mathbf { v } = \langle 1,4 \rangle determine the quantity indicated below. 2u4v- 2 \mathbf { u }{ \cdot}- 4 \mathbf { v }

A)-48
B)-56
C)-46
D)88
E)20
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
53
The vector u=2700,4700\mathbf { u } = \langle 2700,4700 \rangle gives the number of units of two models of laptops produced by a company.The vector v=1200,900\mathbf { v } = \langle 1200,900 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Use dot products to determine the revenue for these two laptops if the price of each is increased by 6%.

A)$7,664,400
B)$7,791,300
C)$7,918,200
D)$7,723,800
E)$7,768,800
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
54
Find the angle between the vectors u and v.​ u=cos(π3)i+sin(π3)j\mathbf { u } = \cos \left( \frac { \pi } { 3 } \right) \mathbf { i } + \sin \left( \frac { \pi } { 3 } \right) \mathbf { j } , v=cos(5π4)i+sin(5π4)j\mathbf { v } = \cos \left( \frac { 5 \pi } { 4 } \right) \mathbf { i } + \sin \left( \frac { 5 \pi } { 4 } \right) \mathbf { j }

A) 4040 ^ { \circ }
B) 7575 ^ { \circ }
C) 105105 ^ { \circ }
D) 165165 ^ { \circ }
E) 175175 ^ { \circ }
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
55
Find the projection of u onto v if u=5,3\mathbf { u } = \langle 5 , - 3 \rangle , v=1,4\mathbf { v } = \langle - 1,4 \rangle . ​

A)​ 171717,511717\left\langle \frac { - 17 \sqrt { 17 } } { 17 } , \frac { 51 \sqrt { 17 } } { 17 } \right\rangle
B)​ 171717,681717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { 68 \sqrt { 17 } } { 17 } \right\rangle
C)​ 171717,171717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { 17 \sqrt { 17 } } { 17 } \right\rangle
D)​ 171717,681717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { - 68 \sqrt { 17 } } { 17 } \right\rangle
E)​ 171717,511717\left\langle \frac { 17 \sqrt { 17 } } { 17 } , \frac { 51 \sqrt { 17 } } { 17 } \right\rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
56
Use vectors to find the measure of the angle at vertex B of triangle ABC,when A=(5,1)A = ( 5,1 ) , B=(5,1)B = ( - 5,1 ) ,and C=(3,5)C = ( - 3 , - 5 ) .Round answer to two decimal places.

A)69.48°
B)71.57°
C)72.91°
D)70.38°
E)74.09°
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
57
Find the angle between the vectors u and v if u=3,4\mathbf { u } = \langle 3,4 \rangle ,and v=1,2\mathbf { v } = \langle - 1 , - 2 \rangle Round answer to two decimal places.

A)167.77°
B)168.46°
C)169.70°
D)170.66°
E)171.11°
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
58
Find the angle between the vectors u and v if u=i+2j\mathbf { u } = \mathbf { i } + 2 \mathbf { j } and v=4i+2j\mathbf { v } = 4 \mathbf { i } + 2 \mathbf { j } Round answer to two decimal places.

A)36.87°
B)37.83°
C)38.28°
D)34.94°
E)35.63°
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
59
Determine u.vu.v if u=5\| \mathbf { u } \| = 5 , v=4\| \mathbf { v } \| = 4 ,and θ=π4\theta = \frac { \pi } { 4 } where θ is the angle between u and v.Round answer to two decimal places.

A)15.73
B)12.07
C)10.00
D)17.32
E)14.14
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
60
Given u=5,6\mathbf { u } = \langle - 5 , - 6 \rangle and v=6,5\mathbf { v } = \langle - 6 , - 5 \rangle ,find u.vu^.v .

A)0
B)30
C)60
D)61
E)-11
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
61
Determine whether u are v and orthogonal,parallel,or neither. u=13,52\mathbf { u } = \left\langle \frac { 1 } { 3 } , \frac { 5 } { 2 } \right\rangle , v=4,30\mathbf { v } = \langle - 4 , - 30 \rangle

A)orthogonal
B)parallel
C)neither
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
62
Determine whether u are v and orthogonal,parallel,or neither. u=4,7,v=14,24\mathbf { u } = \langle - 4 , - 7 \rangle , \mathbf { v } = \langle 14,24 \rangle

A)orthogonal
B)parallel
C)neither
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
63
Find the projection of u onto v if , u=4,2\mathbf { u } = \langle 4,2 \rangle , v=5,2\mathbf { v } = \langle 5 , - 2 \rangle . ​

A)​ 8029,3229\left\langle \frac { 80 } { \sqrt { 29 } } , \frac { 32 } { \sqrt { 29 } } \right\rangle
B)​ 6429,8029\left\langle \frac { 64 } { \sqrt { 29 } } , \frac { 80 } { \sqrt { 29 } } \right\rangle
C)​ 6429,3229\left\langle \frac { 64 } { \sqrt { 29 } } , \frac { 32 } { \sqrt { 29 } } \right\rangle
D)​ 6429,3229\left\langle \frac { 64 } { \sqrt { 29 } } , - \frac { 32 } { \sqrt { 29 } } \right\rangle
E)​ 8029,3229\left\langle \frac { 80 } { \sqrt { 29 } } , - \frac { 32 } { \sqrt { 29 } } \right\rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
64
​Find the projection of u onto v if , u=5,4\mathbf { u } = \langle - 5 , - 4 \rangle , v=2,5\mathbf { v } = \langle 2 , - 5 \rangle .

A)​ 202929,502929\left\langle \frac { 20 \sqrt { 29 } } { 29 } , - \frac { 50 \sqrt { 29 } } { 29 } \right\rangle
B)​ 502929,502929\left\langle - \frac { 50 \sqrt { 29 } } { 29 } , - \frac { 50 \sqrt { 29 } } { 29 } \right\rangle
C)​ 502929,402929\left\langle - \frac { 50 \sqrt { 29 } } { 29 } , - \frac { 40 \sqrt { 29 } } { 29 } \right\rangle
D)​ 202929,402929\left\langle - \frac { 20 \sqrt { 29 } } { 29 } , - \frac { 40 \sqrt { 29 } } { 29 } \right\rangle
E)​ 502929,202929\left\langle - \frac { 50 \sqrt { 29 } } { 29 } , \frac { 20 \sqrt { 29 } } { 29 } \right\rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
65
The vector u=2500,3000\mathbf { u } = \langle 2500,3000 \rangle gives the number of units of two models of laptops produced by a company.The vector v=2000,1000\mathbf { v } = \langle 2000,1000 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Use dot products to determine the revenue for these two laptops if the price of each is increased by 3.5%.

A)$8,186,667
B)$8,175,000
C)$8,280,000
D)$8,227,500
E)$8,105,000
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
66
The vector u=3800,5400\mathbf { u } = \langle 3800,5400 \rangle gives the number of units of two models of laptops produced by a company.The vector v=1350,1000\mathbf { v } = \langle 1350,1000 \rangle gives the prices (in dollars)of the two models of laptops,respectively.Identify the vector operation used to increase revenue by 3.5%.

A) u(1.035)v\mathbf { u } \cdot ( 1.035 ) \| \mathbf { v } \|
B) 1.035(uv)1.035 ( \mathbf { u } \cdot \mathbf { v } )
C) 1.035u.v1.035 \left\| \mathbf { u } ^ { . } \mathbf { v } \right\|
D) 1.035uv1.035 \| \mathbf { u } \| \cdot \mathbf { v }
E) 1.035(u+v)1.035 ( \mathbf { u } + \mathbf { v } )
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
67
Find the projection of u onto v if u=4,5\mathbf { u } = \langle 4 , - 5 \rangle , v=3,1\mathbf { v } = \langle 3 , - 1 \rangle

A)​ 5110,1710\left\langle \frac { 51 } { \sqrt { 10 } } , \frac { - 17 } { \sqrt { 10 } } \right\rangle
B)​ 5110,1710\left\langle \frac { - 51 } { \sqrt { 10 } } , \frac { - 17 } { \sqrt { 10 } } \right\rangle
C)​ 5110,5110\left\langle \frac { 51 } { \sqrt { 10 } } , \frac { - 51 } { \sqrt { 10 } } \right\rangle
D)​ 1710,1710\left\langle \frac { 17 } { \sqrt { 10 } } , \frac { - 17 } { \sqrt { 10 } } \right\rangle
E)​ 1710,1710\left\langle \frac { 17 } { \sqrt { 10 } } , \frac { 17 } { \sqrt { 10 } } \right\rangle
Unlock Deck
Unlock for access to all 67 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 67 flashcards in this deck.