Deck 14: Integral Transform Method

Full screen (f)
exit full mode
Question
The solution of the integral equation 0f(x)cos(ax)dx=F(α)\int _ { 0 } ^ { - \infty } f ( x ) \cos ( a x ) d x = F ( \alpha ) is

A) f(x)=0F(α)cos(αx)dα/πf ( x ) = \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha / \pi
B) f(x)=20F(α)cos(αx)dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha / \pi
C) f(x)=20F(α)cos(αx)dαf ( x ) = 2 \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha
D) f(x)=0F(α)cos(αx)dαf ( x ) = \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha
E) none of the above
Use Space or
up arrow
down arrow
to flip the card.
Question
In the three previous problems, the solution for u(x,t)u ( x , t ) is

A) u=sin(π)u(tx/a)u = \sin ( \pi ) u ( t - x / a )
B) u=sin(π(tx/a))u(tx/a)u = \sin ( \pi ( t - x / a ) ) u ( t - x / a )
C) u=sin(πx)cosh(πt)u = \sin ( \pi x ) \cosh ( \pi t )
D) u=cos(πx)sinh(πt)u = \cos ( \pi x ) \sinh ( \pi t )
E) u=cos(π(tx/a))u(tx/a)u = \cos ( \pi ( t - x / a ) ) u ( t - x / a )
Question
Let f(x)={0 if x<02 if 0x30 if x>3}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < 0 \\2 & \text { if } & 0 \leq x \leq 3 \\0 & \text { if } & x > 3\end{array} \right\} . The Fourier integral representation of f is

A) f(x)=0{[sin(αx)+sin((3x)α)]/α}dα/πf ( x ) = \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi
B) f(x)=20{[sin(αx)+sin((3x)α)]/α}dαf ( x ) = 2 \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha
C) f(x)=20{[sin(αx)+sin((3x)α)]/α}dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi
D) f(x)=0{[sin(ax)+sin((3x)α)]/α}dαf ( x ) = \int _ { 0 } ^ { \infty } \{ [ \sin ( a x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha
E) none of the above
Question
In the previous problem, the solution for U(α,t)U ( \alpha , t ) is

A) ekat/(1+α2)e ^ { k a t } / \left( 1 + \alpha ^ { 2 } \right)
B) ekα2t/(1+α2)e ^ { k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right)
C) 2ekcs/(1+α2)2 e ^ { k c s } / \left( 1 + \alpha ^ { 2 } \right)
D) 2ekce/(1+α2)2 e ^ { - k c e } / \left( 1 + \alpha ^ { 2 } \right)
E) 2ekα2t/(1+α2)2 e ^ { - k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right)
Question
In the previous problem, the integral converges at x=0x = 0 to the value

A) 0
B) 1/21 / 2
C) 1
D) 2
E) ee
Question
The value of L{eterf(t)}\mathcal { L } \left\{ \mathrm { e } ^ { t } \operatorname { erf } ( \sqrt { t } ) \right\} is

A) 1/(s(s+1))1 / ( \sqrt { s } ( \sqrt { s } + 1 ) )
B) 1/(s(s1))1 / ( \sqrt { s } ( \sqrt { s } - 1 ) )
C) 1/(s(s+1))1 / ( s ( \sqrt { s } + 1 ) )
D) 1/(s(s1))1 / ( s ( \sqrt { s } - 1 ) )
E) none of the above
Question
The value of L{erfc(t)}\mathcal { L } \{ \operatorname { erfc } ( \sqrt { t } ) \} is

A) (1+1/s+1)/s( 1 + 1 / \sqrt { s + 1 } ) / s
B) (1+1/s1)/s( 1 + 1 / \sqrt { s - 1 } ) / s
C) (11/s+1)/s( 1 - 1 / \sqrt { s + 1 } ) / s
D) (11/s1)/s( 1 - 1 / \sqrt { s - 1 } ) / s
E) none of the above
Question
In the previous two problems, the integral converges for x<0x < 0 to the function

A) exe ^ { - \mathrm { x } }
B) exe ^ { x }
C) xx
D) 1
E) none of the above
Question
In the previous three problems, the solution for u(x,t)u ( x , t ) is

A) [eiαxekat/(1+α2)]dα/(2π)\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { k at } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / ( 2 \pi )
B) [eiαxekα2t/(1+α2)]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { - k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
C) [eiααekαt/(1+α2)]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha \alpha } e ^ { k \alpha t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
D) [eiαxekαt/(1+α2)]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { - k \alpha t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
E) [eiααekα2t/(1+α2)]dα/(2π)\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha \alpha } e ^ { k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / ( 2 \pi )
Question
The complementary error function is defined as

A) erfc(x)=0xeu2du\operatorname { erfc } ( x ) = \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u
B) erfc(x)=0eu2du\operatorname { erfc } ( x ) = \int _ { 0 } ^ { \infty } e ^ { - u ^ { 2 } } d u
C) erfc(x)=20xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \pi
D) erfc(x)=2xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { x } ^ { \infty } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
E) erfc(x)=20xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
Question
In the previous problem, assume that f(x)=sin(πt)f ( x ) = \sin ( \pi t ) . The solution for U(x,s)U ( x , s ) is

A) U=ss2+π2esx/αU = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } e ^ { s x / \alpha }
B) U=ss2π2esx/αU = \frac { s } { s ^ { 2 } - \pi ^ { 2 } } e ^ { - s x / \alpha }
C) U=πs2π2esx/αU = \frac { \pi } { s ^ { 2 } - \pi ^ { 2 } } e ^ { s x / \alpha }
D) U=ss2+π2esx/αU = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } e ^ { - s x / \alpha }
E) U=ss2+π2sinh(sx/α)U = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sinh ( - s x / \alpha )
Question
Apply a Fourier transform in xx in the previous problem. The resulting equation for U(α,t)=F{u(x,t)}U ( \alpha , t ) = \mathcal { F } \{ u ( x , t ) \} is

A) kα2U=Ut,U(α,0)=2/(1+α2)k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
B) kαU=Ut,U(α,0)=1/(1+α2)k \alpha U = U _ { t } , U ( \alpha , 0 ) = 1 / \left( 1 + \alpha ^ { 2 } \right)
C) kα2U=Ut,U(α,0)=1/(1+α2)k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 1 / \left( 1 + \alpha ^ { 2 } \right)
D) kα2U=Ut,U(α,0)=2/(1+α2)- k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
E) kαU=Ut,U(α,0)=2/(1+α2)- k \alpha U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
Question
The Fourier cosine integral of a function f defined on [0,][ 0 , \infty ] is

A) 20[0f(x)cos(αx)dx]cos(αx)dα/π2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha / \pi
B) 0[0f(x)cos(αx)dx]cos(αx)dα/π\int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha / \pi
C) 20[0f(x)cos(αx)dx]cos(αx)dα2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha
D) 0[0f(x)cos(αx)dα]cos(αx)dx\int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d \alpha \right] \cos ( \alpha x ) d x
E) 20[0f(x)cos(αx)dα]cos(αx)dx/π2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d \alpha \right] \cos ( \alpha x ) d x / \pi
Question
In the previous problem, the integral converges at x=0x = 0 to the value

A) 0
B) 1
C) 2
D) 3
E) 4
Question
In the previous problem, if F(α)=eα, then f(x)F ( \alpha ) = e ^ { - \alpha } \text {, then } f ( x ) is

A) xx
B) 11
C) 1/(π(1+x2))1 / \left( \pi \left( 1 + x ^ { 2 } \right) \right)
D) 2/(π(1+x2))2 / \left( \pi \left( 1 + x ^ { 2 } \right) \right)
E) 0
Question
Consider the temperature, u(x,t)u ( x , t ) , in an infinite rod (<x<)( - \infty < x < \infty ) , with an initial temperature of f(x)=exf ( x ) = e ^ { - | x | } . The mathematical model for this is

A) k2ux2=ut,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = e ^ { - | x | }
B) kux=ut,u(x,0)=exk \frac { \partial u } { \partial x } = \frac { \partial u } { \partial t } , u ( x , 0 ) = e ^ { - | x | }
C) k2ux2=2ut2,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = e ^ { - | x | }
D) k2ux2+2ut2=0,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = e ^ { - | x | }
E) k2ux2+ut=0,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = e ^ { - | x | }
Question
In the previous problem, apply the Laplace transform. The resulting equation for U(x,s)=L{u(x,t)}U ( x , s ) = \mathcal { L } \{ u ( x , t ) \} is

A) a22Ux2+s2U=sf(x)a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = - s f ( x )
B) a22Ux2+s2U=0a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = 0
C) a22Ux2s2U=f(x)a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - f ( x )
D) a22Ux2s2U=sf(x)a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = s f ( x )
E) a22Ux2s2U=0a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = 0
Question
Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at x=0x = 0 , so that u(0,t)=f(t)u ( 0 , t ) = f ( t ) . Assume that limxu(x,t)=0\lim _ { x \rightarrow \infty } u ( x , t ) = 0 . The mathematical model for the deflection, u(x,t)u ( x , t ) , is

A) α22ux2=2ut2,u(0,t)=f(t),u(x,0)=0,ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
B) α22ux2+2ut2=0,u(0,t)=f(t),u(x,0)=f(t),ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0
C) α22ux2=ut,u(0,t)=f(t),u(x,0)=0,ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
D) α22ux2+ut=0,u(0,t)=f(t),u(x,0)=0,ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
E) α22ux2=2ut2,u(0,t)=f(t),u(x,0)=f(t),ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0
Question
The value of limxerfc(x)\lim _ { x \rightarrow \infty } \operatorname { erfc } ( x ) is

A) 0
B) 1
C) π/2\pi / 2
D) π/2\sqrt { \pi / 2 }
E) π/2\sqrt { \pi } / 2
Question
The Fourier cosine integral of f(x)=ex,x0f ( x ) = e ^ { - x } , x \geq 0 is

A) f(x)=20[αcos(αx)/(1+α)]dαf ( x ) = 2 \int _ { 0 } ^ { \infty } [ \alpha \cos ( \alpha x ) / ( 1 + \alpha ) ] d \alpha
B) f(x)=0[αcos(αx)/(1+α2)]dα/πf ( x ) = \int _ { 0 } ^ { \infty } \left[ \alpha \cos ( \alpha x ) / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
C) f(x)=0[αcos(αx)/(1+α2)]dαf ( x ) = \int _ { 0 } ^ { \infty } \left[ \alpha \cos ( \alpha x ) / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha
D) f(x)=20[cos(αx)/(1+α2)]dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } \left[ \cos ( \alpha x ) / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
E) f(x)=20[cos(αx)/(1+α)]dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } [ \cos ( \alpha x ) / ( 1 + \alpha ) ] d \alpha / \pi
Question
In the previous problem, assume that f(x)=sin(πx)f ( x ) = \sin ( \pi x ) . The solution for U(x,s)U ( x , s ) is

A) U=sinh(sx)+ss2+π2sin(πx)U = \sinh ( s x ) + \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
B) U=cosh(sx)+ss2π2sin(πx)U = \cosh ( s x ) + \frac { s } { s ^ { 2 } - \pi ^ { 2 } } \sin ( \pi x )
C) U=1s2π2sin(πx)U = \frac { 1 } { s ^ { 2 } - \pi ^ { 2 } } \sin ( \pi x )
D) U=ss2+π2sin(πx)U = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
E) U=1s2+π2sin(πx)U = \frac { 1 } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
Question
The value of L{erf(t)}\mathcal { L } \{ \operatorname { erf } ( \sqrt { t } ) \} is

A) 1/(ss+1)1 / ( s \sqrt { s + 1 } )
B) 1/(ss1)1 / ( s \sqrt { s - 1 } )
C) 1/((s+1)s)1 / ( ( s + 1 ) \sqrt { s } )
D) 1/((s1)s)1 / ( ( s - 1 ) \sqrt { s } )
E) none of the above
Question
The error function is defined as

A) erf(x)=0xeu2du\operatorname { erf } ( x ) = \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u
B) erf(x)=0eu2du\operatorname { erf } ( x ) = \int _ { 0 } ^ { \infty } e ^ { - u ^ { 2 } } d u
C) erf(x)=20xeu2du/π\operatorname { erf } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \pi
D) erf(x)=20eu2du/π\operatorname { erf } ( x ) = 2 \int _ { 0 } ^ { \infty } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
E) erf(x)=20xeu2du/π\operatorname { erf } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
Question
Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature, u0u _ { 0 } , at x=0x = 0 . The mathematical model for this problem is

A) k2ux2=ut,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
B) k2ux2=2ut2,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
C) k2ux2+ut=0,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
D) k2ux2+2ut2=0,u(x,0)=u0,u(0,t)=0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = u _ { 0 } , u ( 0 , t ) = 0
E) k2ux2+ut=0,u(x,0)=u0,u(0,t)=0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = u _ { 0 } , u ( 0 , t ) = 0
Question
The value of L{eterf(t)}\mathcal { L } \left\{ \mathrm { e } ^ { t } \operatorname { erf } ( \sqrt { t } ) \right\} is

A) 1/(s(s+1))1 / ( \sqrt { s } ( s + 1 ) )
B) 1/(s(s1))1 / ( \sqrt { s } ( s - 1 ) )
C) 1/(s(s+1))1 / ( s ( s + 1 ) )
D) 1/(s(s1))1 / ( s ( \sqrt { s } - 1 ) )
E) 1/(s(s+1))1 / ( s ( \sqrt { s } + 1 ) )
Question
The value of limxerf(x)\lim _ { x \rightarrow \infty } \operatorname { erf } ( x ) is

A) 0
B) 1
C) π/2\pi / 2
D) π/2\sqrt { \pi / 2 }
E) π/2\sqrt { \pi } / 2
Question
The Laplace transform of a function f is

A) L{f(x)}=0etf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { t } f ( t ) d t
B) L{f(x)}=0etf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { - t } f ( t ) d t
C) L{f(x)}=0estf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { s t } f ( t ) d t
D) L{f(x)}=0estf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { - s t } f ( t ) d t
E) L{f(x)}=0sestf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { s } e ^ { s t } f ( t ) d t
Question
The Fourier integral representation of a function f is given by

A) f(x)cos(αx)dx\int _ { - \infty } ^ { \infty } f ( x ) \cos ( \alpha x ) d x
B) f(x)sin(αx)dx\int _ { - \infty } ^ { \infty } f ( x ) \sin ( \alpha x ) d x
C) 0[f(t)cos(αt)dtcos(αx)+f(t)sin(αt)dtsin(αx)]dα\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha
D) 0[f(t)cos(αt)dtcos(αx)+f(t)sin(αt)dtsin(αx)]dα/π\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha / \pi
E) 0[f(t)cos(αt)dtcos(αx)+f(t)sin(αt)dtsin(αx)]dα/(2π)\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha / ( 2 \pi )
Question
In the three previous problems, the solution for the temperature u(x,t)u ( x , t ) is

A) u=u00[sin(αx)(1ekα2t)/α]dαu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha
B) u=u00[sin(αx)(1ekα2t)/α]dα/πu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha / \pi
C) u=2u00[sin(αx)(1ekα2t)/α]dαu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha
D) u=2u00[sin(αx)(1ekα2t)/α]dα/πu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha / \pi
E) u=2u00[sin(αx)(1ekα2t)/α]dα/πu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha / \pi
Question
If U(x,s)=C{u(x,t)}, then {2ut2}U ( x , s ) = \mathcal { C } \{ u ( x , t ) \} , \text { then } \left\{ \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } \right\} is

A) Us(x,s)U _ { s } ( x , s )
B) sU(x,s)s U ( x , s )
C) s2U(x,s)u(x,0)s ^ { 2 } U ( x , s ) - u ( x , 0 )
D) s2U(x,s)u(x,0)sut(x,0)s ^ { 2 } U ( x , s ) - u ( x , 0 ) - s u _ { t } ( x , 0 )
E) s2U(x,s)su(x,0)ut(x,0)s ^ { 2 } U ( x , s ) - s u ( x , 0 ) - u _ { t } ( x , 0 )
Question
In the previous problem, apply the Laplace transform. The resulting equation for U(x,s)=L{u(x,t)}U ( x , s ) = \mathcal { L } \{ u ( x , t ) \} is

A) 2Ux2+s2U=sf(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = - s f ( x )
B) 2Ux2+s2U=f(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = f ( x )
C) 2Ux2s2U=f(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - f ( x )
D) 2Ux2s2U=sf(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = s f ( x )
E) 2Ux2s2U=sf(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - s f ( x )
Question
Suppose F{f(x)}=F(α),F{g(x)}=G(α)\mathcal { F } \{ f ( x ) \} = F ( \alpha ) , \mathcal { F } \{ g ( x ) \} = G ( \alpha ) . In the convolution theorem, the formula for the Fourier transform is Select all that apply.

A) f(τ)g(tτ)dτ=F1{F(α)G(α)}\int _ { - \infty } ^ { \infty } f ( \tau ) g ( t - \tau ) d \tau = \mathcal { F } ^ { - 1 } \{ F ( \alpha ) G ( \alpha ) \}
B) f(tτ)g(τ)dτ=F1{F(α)G(α)}\int _ { - \infty } ^ { \infty } f ( t - \tau ) g ( \tau ) d \tau = \mathcal { F } ^ { - 1 } \{ F ( \alpha ) G ( \alpha ) \}
C) F{f(τ)g(tτ)dτ}=F(α)G(α)\mathcal { F } \left\{ \int _ { - \infty } ^ { \infty } f ( \tau ) g ( t - \tau ) d \tau \right\} = F ( \alpha ) G ( \alpha )
D) F{f(tτ)g(τ)dτ}=F(α)G(α)\mathcal { F } \left\{ \int _ { - \infty } ^ { \infty } f ( t - \tau ) g ( \tau ) d \tau \right\} = F ( \alpha ) G ( \alpha )
E) none of the above
Question
The complex form of the Fourier integral of a function f is

A) f(t)eiαtdt\int _ { - \infty } ^ { \infty } f ( t ) e ^ { i \alpha t} d t
B) (f(t)eiαtdt)eiααdα/(2π)\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { i \alpha t } d t \right) e ^ { - i \alpha \alpha } d \alpha / ( 2 \pi )
C) f(t)eiαtdt\int _ { - \infty } ^ { \infty } f ( t ) e ^ { - i \alpha t } d t
D) (f(t)eiαtdt)eiαxdα/π\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { - i \alpha t } d t \right) e ^ { i \alpha x } d \alpha / \pi
E) (f(t)eαtdt)eiαxdα/π\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { \alpha t } d t \right) e ^ { - i \alpha x } d \alpha / \pi
Question
In the previous problem, the integral representation converges at x=1x = 1 to the value

A) 0
B) 1
C) 1/21 / 2
D) -1
E) none of the above
Question
In the three previous problems, the solution for u(x,t)u ( x , t ) is

A) u=sin(πx)sin(πt)u = \sin ( \pi x ) \sin ( \pi t )
B) u=sin(πx)cos(πt)u = \sin ( \pi x ) \cos ( \pi t )
C) u=sin(πx)cosh(πt)u = \sin ( \pi x ) \cosh ( \pi t )
D) u=cos(πx)sinh(πt)u = \cos ( \pi x ) \sinh ( \pi t )
E) u=cos(πx)cos(πi)u = \cos ( \pi x ) \cos ( \pi i )
Question
If U(x,s)=C{u(x,t)}, then L{ux}U ( x , s ) = \mathcal { C } \{ u ( x , t ) \} \text {, then } \mathcal { L } \left\{ \frac { \partial u } { \partial x } \right\} is

A) sU(x,s)u(x,0)s U ( x , s ) - u ( x , 0 )
B) sU(x,s)ux(x,0)s U ( x , s ) - u _ { x } ( x , 0 )
C) sU(x,s)su(x,0)s U ( x , s ) - s u ( x , 0 )
D) Ux(x,s)U _ { x } ( x , s )
E) Us(x,s)U _ { s } ( x , s )
Question
Let f(x)={0 if x<11 if 1<x<10 if x>1}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < - 1 \\1 & \text { if } & - 1 < x < 1 \\0 & \text { if } & x > 1\end{array} \right\} . The Fourier integral representation of f is f(x)=0[A(α)cos(αx)+B(α)sin(αx)]dα/πf ( x ) = \int _ { 0 } ^ { \infty } [ A ( \alpha ) \cos ( \alpha x ) + B ( \alpha ) \sin ( \alpha x ) ] d \alpha / \pi , where

A) A(α)=sinα/α and B(α)=cosα/αA ( \alpha ) = \sin \alpha / \alpha \text { and } B ( \alpha ) = \cos \alpha / \alpha
B) A(α)=2cosα/α and B(α)=2sinα/αA ( \alpha ) = 2 \cos \alpha / \alpha \text { and } B ( \alpha ) = 2 \sin \alpha / \alpha
C) A(α)=2sinα/α and B(α)=2cosα/αA ( \alpha ) = 2 \sin \alpha / \alpha \text { and } B ( \alpha ) = 2 \cos \alpha / \alpha
D) A(α)=0 and B(α)=2sinα/αA ( \alpha ) = 0 \text { and } B ( \alpha ) = 2 \sin \alpha / \alpha
E) A(α)=2sinα/α and B(α)=0A ( \alpha ) = 2 \sin \alpha / \alpha \text { and } B ( \alpha ) = 0
Question
Consider the problem of a vibrating string, tightly-stretched between x=0x = 0 and x=1x = 1 , with a fixed initial position, f(x)f ( x ) , and zero initial velocity. The mathematical problem for the deflection, u(x,t)u ( x , t ) , is ( with u(0,t)=0,u(1,t)=0)( \text { with } u ( 0 , t ) = 0 , u ( 1 , t ) = 0 )

A) 2ux2=ut,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
B) 2ux2+ut=0,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
C) 2ux2=2ut2,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
D) 2ux2+2ut2=0,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
E) 2ux2=2ut2,u(x,0)=0,ut(x,0)=f(x)\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = f ( x )
Question
In the previous problem, apply a Fourier sine transform in x. The new problem for the transform U(a,t)U ( a , t ) is

A) kUt+α2U=kαu0,U(α,0)=0k \frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
B) kUtα2U=kαu0,U(α,0)=0k \frac { \partial U } { \partial t } - \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
C) Ut+kα2U=kαψ0,U(α,0)=0\frac { \partial U } { \partial t } + k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
D) Utkα2U=kαψ0,U(α,0)=0\frac { \partial U } { \partial t } - k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
E) Ut+α2U=kαu0,U(α,0)=0\frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
Question
In the previous problem, the solution is

A) U=u0(1+ekα2t)U = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right)
B) U=u0(1ekα2t)U = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right)
C) U=u0(1+ekα2t)/αU = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
D) U=u0(1ekα2t)/αU = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
E) U=u0(1ekα2t)/α2U = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha ^ { 2 }
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 14: Integral Transform Method
1
The solution of the integral equation 0f(x)cos(ax)dx=F(α)\int _ { 0 } ^ { - \infty } f ( x ) \cos ( a x ) d x = F ( \alpha ) is

A) f(x)=0F(α)cos(αx)dα/πf ( x ) = \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha / \pi
B) f(x)=20F(α)cos(αx)dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha / \pi
C) f(x)=20F(α)cos(αx)dαf ( x ) = 2 \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha
D) f(x)=0F(α)cos(αx)dαf ( x ) = \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha
E) none of the above
f(x)=20F(α)cos(αx)dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } F ( \alpha ) \cos ( \alpha x ) d \alpha / \pi
2
In the three previous problems, the solution for u(x,t)u ( x , t ) is

A) u=sin(π)u(tx/a)u = \sin ( \pi ) u ( t - x / a )
B) u=sin(π(tx/a))u(tx/a)u = \sin ( \pi ( t - x / a ) ) u ( t - x / a )
C) u=sin(πx)cosh(πt)u = \sin ( \pi x ) \cosh ( \pi t )
D) u=cos(πx)sinh(πt)u = \cos ( \pi x ) \sinh ( \pi t )
E) u=cos(π(tx/a))u(tx/a)u = \cos ( \pi ( t - x / a ) ) u ( t - x / a )
u=sin(π(tx/a))u(tx/a)u = \sin ( \pi ( t - x / a ) ) u ( t - x / a )
3
Let f(x)={0 if x<02 if 0x30 if x>3}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < 0 \\2 & \text { if } & 0 \leq x \leq 3 \\0 & \text { if } & x > 3\end{array} \right\} . The Fourier integral representation of f is

A) f(x)=0{[sin(αx)+sin((3x)α)]/α}dα/πf ( x ) = \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi
B) f(x)=20{[sin(αx)+sin((3x)α)]/α}dαf ( x ) = 2 \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha
C) f(x)=20{[sin(αx)+sin((3x)α)]/α}dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi
D) f(x)=0{[sin(ax)+sin((3x)α)]/α}dαf ( x ) = \int _ { 0 } ^ { \infty } \{ [ \sin ( a x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha
E) none of the above
f(x)=20{[sin(αx)+sin((3x)α)]/α}dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } \{ [ \sin ( \alpha x ) + \sin ( ( 3 - x ) \alpha ) ] / \alpha \} d \alpha / \pi
4
In the previous problem, the solution for U(α,t)U ( \alpha , t ) is

A) ekat/(1+α2)e ^ { k a t } / \left( 1 + \alpha ^ { 2 } \right)
B) ekα2t/(1+α2)e ^ { k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right)
C) 2ekcs/(1+α2)2 e ^ { k c s } / \left( 1 + \alpha ^ { 2 } \right)
D) 2ekce/(1+α2)2 e ^ { - k c e } / \left( 1 + \alpha ^ { 2 } \right)
E) 2ekα2t/(1+α2)2 e ^ { - k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
In the previous problem, the integral converges at x=0x = 0 to the value

A) 0
B) 1/21 / 2
C) 1
D) 2
E) ee
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
The value of L{eterf(t)}\mathcal { L } \left\{ \mathrm { e } ^ { t } \operatorname { erf } ( \sqrt { t } ) \right\} is

A) 1/(s(s+1))1 / ( \sqrt { s } ( \sqrt { s } + 1 ) )
B) 1/(s(s1))1 / ( \sqrt { s } ( \sqrt { s } - 1 ) )
C) 1/(s(s+1))1 / ( s ( \sqrt { s } + 1 ) )
D) 1/(s(s1))1 / ( s ( \sqrt { s } - 1 ) )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
The value of L{erfc(t)}\mathcal { L } \{ \operatorname { erfc } ( \sqrt { t } ) \} is

A) (1+1/s+1)/s( 1 + 1 / \sqrt { s + 1 } ) / s
B) (1+1/s1)/s( 1 + 1 / \sqrt { s - 1 } ) / s
C) (11/s+1)/s( 1 - 1 / \sqrt { s + 1 } ) / s
D) (11/s1)/s( 1 - 1 / \sqrt { s - 1 } ) / s
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
In the previous two problems, the integral converges for x<0x < 0 to the function

A) exe ^ { - \mathrm { x } }
B) exe ^ { x }
C) xx
D) 1
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
In the previous three problems, the solution for u(x,t)u ( x , t ) is

A) [eiαxekat/(1+α2)]dα/(2π)\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { k at } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / ( 2 \pi )
B) [eiαxekα2t/(1+α2)]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { - k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
C) [eiααekαt/(1+α2)]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha \alpha } e ^ { k \alpha t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
D) [eiαxekαt/(1+α2)]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { - k \alpha t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
E) [eiααekα2t/(1+α2)]dα/(2π)\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha \alpha } e ^ { k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / ( 2 \pi )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
The complementary error function is defined as

A) erfc(x)=0xeu2du\operatorname { erfc } ( x ) = \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u
B) erfc(x)=0eu2du\operatorname { erfc } ( x ) = \int _ { 0 } ^ { \infty } e ^ { - u ^ { 2 } } d u
C) erfc(x)=20xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \pi
D) erfc(x)=2xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { x } ^ { \infty } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
E) erfc(x)=20xeu2du/π\operatorname { erfc } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
In the previous problem, assume that f(x)=sin(πt)f ( x ) = \sin ( \pi t ) . The solution for U(x,s)U ( x , s ) is

A) U=ss2+π2esx/αU = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } e ^ { s x / \alpha }
B) U=ss2π2esx/αU = \frac { s } { s ^ { 2 } - \pi ^ { 2 } } e ^ { - s x / \alpha }
C) U=πs2π2esx/αU = \frac { \pi } { s ^ { 2 } - \pi ^ { 2 } } e ^ { s x / \alpha }
D) U=ss2+π2esx/αU = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } e ^ { - s x / \alpha }
E) U=ss2+π2sinh(sx/α)U = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sinh ( - s x / \alpha )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
Apply a Fourier transform in xx in the previous problem. The resulting equation for U(α,t)=F{u(x,t)}U ( \alpha , t ) = \mathcal { F } \{ u ( x , t ) \} is

A) kα2U=Ut,U(α,0)=2/(1+α2)k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
B) kαU=Ut,U(α,0)=1/(1+α2)k \alpha U = U _ { t } , U ( \alpha , 0 ) = 1 / \left( 1 + \alpha ^ { 2 } \right)
C) kα2U=Ut,U(α,0)=1/(1+α2)k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 1 / \left( 1 + \alpha ^ { 2 } \right)
D) kα2U=Ut,U(α,0)=2/(1+α2)- k \alpha ^ { 2 } U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
E) kαU=Ut,U(α,0)=2/(1+α2)- k \alpha U = U _ { t } , U ( \alpha , 0 ) = 2 / \left( 1 + \alpha ^ { 2 } \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
The Fourier cosine integral of a function f defined on [0,][ 0 , \infty ] is

A) 20[0f(x)cos(αx)dx]cos(αx)dα/π2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha / \pi
B) 0[0f(x)cos(αx)dx]cos(αx)dα/π\int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha / \pi
C) 20[0f(x)cos(αx)dx]cos(αx)dα2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d x \right] \cos ( \alpha x ) d \alpha
D) 0[0f(x)cos(αx)dα]cos(αx)dx\int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d \alpha \right] \cos ( \alpha x ) d x
E) 20[0f(x)cos(αx)dα]cos(αx)dx/π2 \int _ { 0 } ^ { \infty } \left[ \int _ { 0 } ^ { \infty } f ( x ) \cos ( \alpha x ) d \alpha \right] \cos ( \alpha x ) d x / \pi
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
In the previous problem, the integral converges at x=0x = 0 to the value

A) 0
B) 1
C) 2
D) 3
E) 4
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
In the previous problem, if F(α)=eα, then f(x)F ( \alpha ) = e ^ { - \alpha } \text {, then } f ( x ) is

A) xx
B) 11
C) 1/(π(1+x2))1 / \left( \pi \left( 1 + x ^ { 2 } \right) \right)
D) 2/(π(1+x2))2 / \left( \pi \left( 1 + x ^ { 2 } \right) \right)
E) 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
Consider the temperature, u(x,t)u ( x , t ) , in an infinite rod (<x<)( - \infty < x < \infty ) , with an initial temperature of f(x)=exf ( x ) = e ^ { - | x | } . The mathematical model for this is

A) k2ux2=ut,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = e ^ { - | x | }
B) kux=ut,u(x,0)=exk \frac { \partial u } { \partial x } = \frac { \partial u } { \partial t } , u ( x , 0 ) = e ^ { - | x | }
C) k2ux2=2ut2,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = e ^ { - | x | }
D) k2ux2+2ut2=0,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = e ^ { - | x | }
E) k2ux2+ut=0,u(x,0)=exk \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = e ^ { - | x | }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
In the previous problem, apply the Laplace transform. The resulting equation for U(x,s)=L{u(x,t)}U ( x , s ) = \mathcal { L } \{ u ( x , t ) \} is

A) a22Ux2+s2U=sf(x)a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = - s f ( x )
B) a22Ux2+s2U=0a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = 0
C) a22Ux2s2U=f(x)a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - f ( x )
D) a22Ux2s2U=sf(x)a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = s f ( x )
E) a22Ux2s2U=0a ^ { 2 } \frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at x=0x = 0 , so that u(0,t)=f(t)u ( 0 , t ) = f ( t ) . Assume that limxu(x,t)=0\lim _ { x \rightarrow \infty } u ( x , t ) = 0 . The mathematical model for the deflection, u(x,t)u ( x , t ) , is

A) α22ux2=2ut2,u(0,t)=f(t),u(x,0)=0,ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
B) α22ux2+2ut2=0,u(0,t)=f(t),u(x,0)=f(t),ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0
C) α22ux2=ut,u(0,t)=f(t),u(x,0)=0,ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
D) α22ux2+ut=0,u(0,t)=f(t),u(x,0)=0,ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0
E) α22ux2=2ut2,u(0,t)=f(t),u(x,0)=f(t),ut(x,0)=0\alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
The value of limxerfc(x)\lim _ { x \rightarrow \infty } \operatorname { erfc } ( x ) is

A) 0
B) 1
C) π/2\pi / 2
D) π/2\sqrt { \pi / 2 }
E) π/2\sqrt { \pi } / 2
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
The Fourier cosine integral of f(x)=ex,x0f ( x ) = e ^ { - x } , x \geq 0 is

A) f(x)=20[αcos(αx)/(1+α)]dαf ( x ) = 2 \int _ { 0 } ^ { \infty } [ \alpha \cos ( \alpha x ) / ( 1 + \alpha ) ] d \alpha
B) f(x)=0[αcos(αx)/(1+α2)]dα/πf ( x ) = \int _ { 0 } ^ { \infty } \left[ \alpha \cos ( \alpha x ) / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
C) f(x)=0[αcos(αx)/(1+α2)]dαf ( x ) = \int _ { 0 } ^ { \infty } \left[ \alpha \cos ( \alpha x ) / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha
D) f(x)=20[cos(αx)/(1+α2)]dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } \left[ \cos ( \alpha x ) / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
E) f(x)=20[cos(αx)/(1+α)]dα/πf ( x ) = 2 \int _ { 0 } ^ { \infty } [ \cos ( \alpha x ) / ( 1 + \alpha ) ] d \alpha / \pi
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
In the previous problem, assume that f(x)=sin(πx)f ( x ) = \sin ( \pi x ) . The solution for U(x,s)U ( x , s ) is

A) U=sinh(sx)+ss2+π2sin(πx)U = \sinh ( s x ) + \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
B) U=cosh(sx)+ss2π2sin(πx)U = \cosh ( s x ) + \frac { s } { s ^ { 2 } - \pi ^ { 2 } } \sin ( \pi x )
C) U=1s2π2sin(πx)U = \frac { 1 } { s ^ { 2 } - \pi ^ { 2 } } \sin ( \pi x )
D) U=ss2+π2sin(πx)U = \frac { s } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
E) U=1s2+π2sin(πx)U = \frac { 1 } { s ^ { 2 } + \pi ^ { 2 } } \sin ( \pi x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
The value of L{erf(t)}\mathcal { L } \{ \operatorname { erf } ( \sqrt { t } ) \} is

A) 1/(ss+1)1 / ( s \sqrt { s + 1 } )
B) 1/(ss1)1 / ( s \sqrt { s - 1 } )
C) 1/((s+1)s)1 / ( ( s + 1 ) \sqrt { s } )
D) 1/((s1)s)1 / ( ( s - 1 ) \sqrt { s } )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
The error function is defined as

A) erf(x)=0xeu2du\operatorname { erf } ( x ) = \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u
B) erf(x)=0eu2du\operatorname { erf } ( x ) = \int _ { 0 } ^ { \infty } e ^ { - u ^ { 2 } } d u
C) erf(x)=20xeu2du/π\operatorname { erf } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \pi
D) erf(x)=20eu2du/π\operatorname { erf } ( x ) = 2 \int _ { 0 } ^ { \infty } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
E) erf(x)=20xeu2du/π\operatorname { erf } ( x ) = 2 \int _ { 0 } ^ { x } e ^ { - u ^ { 2 } } d u / \sqrt { \pi }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature, u0u _ { 0 } , at x=0x = 0 . The mathematical model for this problem is

A) k2ux2=ut,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
B) k2ux2=2ut2,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
C) k2ux2+ut=0,u(x,0)=0,u(0,t)=u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
D) k2ux2+2ut2=0,u(x,0)=u0,u(0,t)=0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = u _ { 0 } , u ( 0 , t ) = 0
E) k2ux2+ut=0,u(x,0)=u0,u(0,t)=0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = u _ { 0 } , u ( 0 , t ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
The value of L{eterf(t)}\mathcal { L } \left\{ \mathrm { e } ^ { t } \operatorname { erf } ( \sqrt { t } ) \right\} is

A) 1/(s(s+1))1 / ( \sqrt { s } ( s + 1 ) )
B) 1/(s(s1))1 / ( \sqrt { s } ( s - 1 ) )
C) 1/(s(s+1))1 / ( s ( s + 1 ) )
D) 1/(s(s1))1 / ( s ( \sqrt { s } - 1 ) )
E) 1/(s(s+1))1 / ( s ( \sqrt { s } + 1 ) )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
The value of limxerf(x)\lim _ { x \rightarrow \infty } \operatorname { erf } ( x ) is

A) 0
B) 1
C) π/2\pi / 2
D) π/2\sqrt { \pi / 2 }
E) π/2\sqrt { \pi } / 2
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
The Laplace transform of a function f is

A) L{f(x)}=0etf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { t } f ( t ) d t
B) L{f(x)}=0etf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { - t } f ( t ) d t
C) L{f(x)}=0estf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { s t } f ( t ) d t
D) L{f(x)}=0estf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { \infty } e ^ { - s t } f ( t ) d t
E) L{f(x)}=0sestf(t)dt\mathcal { L } \{ f ( x ) \} = \int _ { 0 } ^ { s } e ^ { s t } f ( t ) d t
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
The Fourier integral representation of a function f is given by

A) f(x)cos(αx)dx\int _ { - \infty } ^ { \infty } f ( x ) \cos ( \alpha x ) d x
B) f(x)sin(αx)dx\int _ { - \infty } ^ { \infty } f ( x ) \sin ( \alpha x ) d x
C) 0[f(t)cos(αt)dtcos(αx)+f(t)sin(αt)dtsin(αx)]dα\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha
D) 0[f(t)cos(αt)dtcos(αx)+f(t)sin(αt)dtsin(αx)]dα/π\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha / \pi
E) 0[f(t)cos(αt)dtcos(αx)+f(t)sin(αt)dtsin(αx)]dα/(2π)\int _ { 0 } ^ { \infty } \left[ \int _ { - \infty } ^ { \infty } f ( t ) \cos ( \alpha t ) d t \cos ( \alpha x ) + \int _ { - \infty } ^ { \infty } f ( t ) \sin ( \alpha t ) d t \sin ( \alpha x ) \right] d \alpha / ( 2 \pi )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
In the three previous problems, the solution for the temperature u(x,t)u ( x , t ) is

A) u=u00[sin(αx)(1ekα2t)/α]dαu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha
B) u=u00[sin(αx)(1ekα2t)/α]dα/πu = u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha / \pi
C) u=2u00[sin(αx)(1ekα2t)/α]dαu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha
D) u=2u00[sin(αx)(1ekα2t)/α]dα/πu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha / \pi
E) u=2u00[sin(αx)(1ekα2t)/α]dα/πu = 2 u _ { 0 } \int _ { 0 } ^ { \infty } \left[ \sin ( \alpha x ) \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha \right] d \alpha / \pi
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
If U(x,s)=C{u(x,t)}, then {2ut2}U ( x , s ) = \mathcal { C } \{ u ( x , t ) \} , \text { then } \left\{ \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } \right\} is

A) Us(x,s)U _ { s } ( x , s )
B) sU(x,s)s U ( x , s )
C) s2U(x,s)u(x,0)s ^ { 2 } U ( x , s ) - u ( x , 0 )
D) s2U(x,s)u(x,0)sut(x,0)s ^ { 2 } U ( x , s ) - u ( x , 0 ) - s u _ { t } ( x , 0 )
E) s2U(x,s)su(x,0)ut(x,0)s ^ { 2 } U ( x , s ) - s u ( x , 0 ) - u _ { t } ( x , 0 )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
In the previous problem, apply the Laplace transform. The resulting equation for U(x,s)=L{u(x,t)}U ( x , s ) = \mathcal { L } \{ u ( x , t ) \} is

A) 2Ux2+s2U=sf(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = - s f ( x )
B) 2Ux2+s2U=f(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } + s ^ { 2 } U = f ( x )
C) 2Ux2s2U=f(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - f ( x )
D) 2Ux2s2U=sf(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = s f ( x )
E) 2Ux2s2U=sf(x)\frac { \partial ^ { 2 } U } { \partial x ^ { 2 } } - s ^ { 2 } U = - s f ( x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
Suppose F{f(x)}=F(α),F{g(x)}=G(α)\mathcal { F } \{ f ( x ) \} = F ( \alpha ) , \mathcal { F } \{ g ( x ) \} = G ( \alpha ) . In the convolution theorem, the formula for the Fourier transform is Select all that apply.

A) f(τ)g(tτ)dτ=F1{F(α)G(α)}\int _ { - \infty } ^ { \infty } f ( \tau ) g ( t - \tau ) d \tau = \mathcal { F } ^ { - 1 } \{ F ( \alpha ) G ( \alpha ) \}
B) f(tτ)g(τ)dτ=F1{F(α)G(α)}\int _ { - \infty } ^ { \infty } f ( t - \tau ) g ( \tau ) d \tau = \mathcal { F } ^ { - 1 } \{ F ( \alpha ) G ( \alpha ) \}
C) F{f(τ)g(tτ)dτ}=F(α)G(α)\mathcal { F } \left\{ \int _ { - \infty } ^ { \infty } f ( \tau ) g ( t - \tau ) d \tau \right\} = F ( \alpha ) G ( \alpha )
D) F{f(tτ)g(τ)dτ}=F(α)G(α)\mathcal { F } \left\{ \int _ { - \infty } ^ { \infty } f ( t - \tau ) g ( \tau ) d \tau \right\} = F ( \alpha ) G ( \alpha )
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
The complex form of the Fourier integral of a function f is

A) f(t)eiαtdt\int _ { - \infty } ^ { \infty } f ( t ) e ^ { i \alpha t} d t
B) (f(t)eiαtdt)eiααdα/(2π)\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { i \alpha t } d t \right) e ^ { - i \alpha \alpha } d \alpha / ( 2 \pi )
C) f(t)eiαtdt\int _ { - \infty } ^ { \infty } f ( t ) e ^ { - i \alpha t } d t
D) (f(t)eiαtdt)eiαxdα/π\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { - i \alpha t } d t \right) e ^ { i \alpha x } d \alpha / \pi
E) (f(t)eαtdt)eiαxdα/π\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { \alpha t } d t \right) e ^ { - i \alpha x } d \alpha / \pi
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
In the previous problem, the integral representation converges at x=1x = 1 to the value

A) 0
B) 1
C) 1/21 / 2
D) -1
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
In the three previous problems, the solution for u(x,t)u ( x , t ) is

A) u=sin(πx)sin(πt)u = \sin ( \pi x ) \sin ( \pi t )
B) u=sin(πx)cos(πt)u = \sin ( \pi x ) \cos ( \pi t )
C) u=sin(πx)cosh(πt)u = \sin ( \pi x ) \cosh ( \pi t )
D) u=cos(πx)sinh(πt)u = \cos ( \pi x ) \sinh ( \pi t )
E) u=cos(πx)cos(πi)u = \cos ( \pi x ) \cos ( \pi i )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
If U(x,s)=C{u(x,t)}, then L{ux}U ( x , s ) = \mathcal { C } \{ u ( x , t ) \} \text {, then } \mathcal { L } \left\{ \frac { \partial u } { \partial x } \right\} is

A) sU(x,s)u(x,0)s U ( x , s ) - u ( x , 0 )
B) sU(x,s)ux(x,0)s U ( x , s ) - u _ { x } ( x , 0 )
C) sU(x,s)su(x,0)s U ( x , s ) - s u ( x , 0 )
D) Ux(x,s)U _ { x } ( x , s )
E) Us(x,s)U _ { s } ( x , s )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
Let f(x)={0 if x<11 if 1<x<10 if x>1}f ( x ) = \left\{ \begin{array} { c c c } 0 & \text { if } & x < - 1 \\1 & \text { if } & - 1 < x < 1 \\0 & \text { if } & x > 1\end{array} \right\} . The Fourier integral representation of f is f(x)=0[A(α)cos(αx)+B(α)sin(αx)]dα/πf ( x ) = \int _ { 0 } ^ { \infty } [ A ( \alpha ) \cos ( \alpha x ) + B ( \alpha ) \sin ( \alpha x ) ] d \alpha / \pi , where

A) A(α)=sinα/α and B(α)=cosα/αA ( \alpha ) = \sin \alpha / \alpha \text { and } B ( \alpha ) = \cos \alpha / \alpha
B) A(α)=2cosα/α and B(α)=2sinα/αA ( \alpha ) = 2 \cos \alpha / \alpha \text { and } B ( \alpha ) = 2 \sin \alpha / \alpha
C) A(α)=2sinα/α and B(α)=2cosα/αA ( \alpha ) = 2 \sin \alpha / \alpha \text { and } B ( \alpha ) = 2 \cos \alpha / \alpha
D) A(α)=0 and B(α)=2sinα/αA ( \alpha ) = 0 \text { and } B ( \alpha ) = 2 \sin \alpha / \alpha
E) A(α)=2sinα/α and B(α)=0A ( \alpha ) = 2 \sin \alpha / \alpha \text { and } B ( \alpha ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
Consider the problem of a vibrating string, tightly-stretched between x=0x = 0 and x=1x = 1 , with a fixed initial position, f(x)f ( x ) , and zero initial velocity. The mathematical problem for the deflection, u(x,t)u ( x , t ) , is ( with u(0,t)=0,u(1,t)=0)( \text { with } u ( 0 , t ) = 0 , u ( 1 , t ) = 0 )

A) 2ux2=ut,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
B) 2ux2+ut=0,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
C) 2ux2=2ut2,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
D) 2ux2+2ut2=0,u(x,0)=f(x),ut(x,0)=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = f ( x ) , u _ { t } ( x , 0 ) = 0
E) 2ux2=2ut2,u(x,0)=0,ut(x,0)=f(x)\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = f ( x )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
In the previous problem, apply a Fourier sine transform in x. The new problem for the transform U(a,t)U ( a , t ) is

A) kUt+α2U=kαu0,U(α,0)=0k \frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
B) kUtα2U=kαu0,U(α,0)=0k \frac { \partial U } { \partial t } - \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
C) Ut+kα2U=kαψ0,U(α,0)=0\frac { \partial U } { \partial t } + k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
D) Utkα2U=kαψ0,U(α,0)=0\frac { \partial U } { \partial t } - k \alpha ^ { 2 } U = k \alpha \psi _ { 0 } , U ( \alpha , 0 ) = 0
E) Ut+α2U=kαu0,U(α,0)=0\frac { \partial U } { \partial t } + \alpha ^ { 2 } U = k \alpha u _ { 0 } , U ( \alpha , 0 ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
In the previous problem, the solution is

A) U=u0(1+ekα2t)U = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right)
B) U=u0(1ekα2t)U = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right)
C) U=u0(1+ekα2t)/αU = u _ { 0 } \left( 1 + e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
D) U=u0(1ekα2t)/αU = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha
E) U=u0(1ekα2t)/α2U = u _ { 0 } \left( 1 - e ^ { - k \alpha ^ { 2 } t } \right) / \alpha ^ { 2 }
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.