Deck 11: Orthogonal Functions and Fourier Series

Full screen (f)
exit full mode
Question
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0 is

A) λ=(n1/2)π,y=cos((n1/2)πx)+sin((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \cos ( ( n - 1 / 2 ) \pi x ) + \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
B) λ=(n1/2)π,y=cos((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \cos ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
C) λ=(n1/2)π,y=sin((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
D) λ=(n1/2)2π2,y=cos((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } , y = \cos ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
E) λ=(n1/2)2π2,y=sin((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } , y = \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
Use Space or
up arrow
down arrow
to flip the card.
Question
In order to be assured by a theorem that the Fourier Series of ff on [a,b][ a , b ] converges at xx , to (f(x+)+f(x))/2( f ( x + ) + f ( x - ) ) / 2 which of the following conditions need to be satisfied? Select all that apply.

A) ff is continuous on [a,b][ a , b ]
B) ff ^ { \prime } is continuous on [a,b][ a , b ]
C) ff is piecewise continuous on [a,b][ a , b ]
D) ff ^ { \prime } is piecewise continuous on [a,b][ a , b ]
E) ff is integrable on [a,b][ a , b ]
Question
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is a regular Sturm-Liouville problem under certain conditions, including Select all that apply.

A) pp , qq , rr piecewise continuous on [a,b][ a , b ]
B) r(x)>0r ( x ) > 0 and p(x)>0p ( x ) > 0 on [a,b][ a , b ]
C) r(x)<0r ( x ) < 0 and p(x)>0p ( x ) > 0 on [a,b][ a , b ]
D) A1B10A _ { 1 } B _ { 1 } \neq 0
E) A12+B120A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } \neq 0
Question
The square norm of the function f(x)=cos(3x)f ( x ) = \cos ( 3 x ) on the interval [0,π/2][ 0 , \pi / 2 ] is

A) 1
B) π\pi
C) π/2\pi / 2
D) π/4\pi / 4
E) 0
Question
The Fourier series of an even function might Select all that apply.

A) contain sine terms
B) contain cosine terms
C) contain a constant term
D) contain sine and cosine terms
E) contain sine, cosine, and constant terms
Question
The square norm of the function f(x)=x2f ( x ) = x ^ { 2 } on the interval [0,1][ 0,1 ] is

A) 1/2
B) 1/3
C) 1/5
D) 1
E) 0
Question
The differential equation (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0 is

A) Legendre's equation
B) Bessel's equation
C) the Fourier-Bessel
D) the hypergeometric
E) none of the above
Question
The Fourier series of the function f(x)={x if x<02x if x>0}f ( x ) = \left\{ \begin{aligned}x & \text { if } x < 0 \\2 - x & \text { if } x > 0\end{aligned} \right\} on [2,2][ - 2,2 ] are Select all that apply.

A) contains only cosine terms
B) contains only sine terms
C) contains sine and cosine terms
D) contains a constant term
E) contains sine, cosine, and constant terms
Question
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 is

A) λ=n2,y=cos(nx),n=0,1,2,\lambda = n ^ { 2 } , y = \cos ( n x ) , n = 0,1,2 , \ldots
B) λ=n2,y=sin(nx),n=1,2,3,\lambda = n ^ { 2 } , y = \sin ( n x ) , n = 1,2,3 , \ldots
C) λ=n,y=cos(nx),n=0,1,2,\lambda = n , y = \cos ( n x ) , n = 0,1,2 , \ldots
D) λ=n,y=sin(nx),n=1,2,3,\lambda = n , y = \sin ( n x ) , n = 1,2,3 , \ldots
E) λ=n,y=cos(nx)+sin(nx),n=1,2,3,\lambda = n , y = \cos ( n x ) + \sin ( n x ) , n = 1,2,3 , \ldots
Question
The Fourier coeficients of the function f(x)=x2f ( x ) = x ^ { 2 } on [1,1][ - 1,1 ] are Select all that apply.

A) a0=2/3a _ { 0 } = 2 / 3
B) an=0a _ { n } = 0
C) an=4(1)n/(n2π2)a _ { n } = 4 ( - 1 ) ^ { n } / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) bn=0b _ { n } = 0
E) bn=4(1)n/(n2π2)b _ { n } = 4 ( - 1 ) ^ { n } / \left( n ^ { 2 } \pi ^ { 2 } \right)
Question
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is not a regular Sturm-Liouville problem under which of the following conditions. Select all that apply.

A) r=1/(xa)r = 1 / ( x - a ) on (a,b)( a , b )
B) q(x)=0q ( x ) = 0 on [a,b][ a , b ]
C) p(x)=xap ( x ) = x - a on [a,b][ a , b ]
D) A1A2=0A _ { 1 } A _ { 2 } = 0
E) A12+B12=0A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } = 0
Question
The solution of the eigenvalue problem (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0 where yy is bounded on [1,1][ - 1,1 ] , is

A) λ=n,y=Pn(x),n=1,2,3,\lambda = n , y = P _ { n } ( x ) , n = 1,2,3 ,
B) λ=n1,y=Pn(x),n=1,2,3,\lambda = n - 1 , y = P _ { n } ( x ) , n = 1,2,3 , \ldots
C) λ=n+1,y=Pn(x),n=1,2,3,\lambda = n + 1 , y = P _ { n } ( x ) , n = 1,2,3 , \ldots
D) λ=n2,y=Pn(x),n=1,2,3,.\lambda = n ^ { 2 } , y = P _ { n } ( x ) , n = 1,2,3 , .
E) λ=n(n+1),y=Pn(x),n=1,2,3,\lambda = n ( n + 1 ) , y = P _ { n } ( x ) , n = 1,2,3 , \ldots
Question
Which of the following differential equations are in self-adjoint form? Select all that apply.

A) r(x)y+r(x)y+λy=0r ( x ) y ^ { \prime \prime } + r ^ { \prime } ( x ) y ^ { \prime } + \lambda y = 0
B) y+y+λy=0y ^ { \prime \prime } + y ^ { \prime } + \lambda y = 0
C) (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0
D) y+λy=0y ^ { \prime \prime } + \lambda y = 0
E) x2y+xy+(x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - n ^ { 2 } \right) y = 0
Question
The Fourier Series of a function f(x)=xf ( x ) = x defined on [1,1][ - 1,1 ] is f(x)=a0/2+n1(ancos(nπx)+bnsin(nπx))f ( x ) = a _ { 0 } / 2 + \sum _ { n - 1 } ^ { \infty } \left( a _ { n } \cos ( n \pi x ) + b _ { n } \sin ( n \pi x ) \right) where Select all that apply.

A) a0=1a _ { 0 } = 1
B) an=0a _ { n } = 0
C) an=11xsin(nπx)dxa _ { n } = \int _ { - 1 } ^ { 1 } x \sin ( n \pi x ) d x
D) bn=0b _ { n } = 0
E) bn=11xsin(nπx)dxb _ { n } = \int _ { - 1 } ^ { 1 } x \sin ( n \pi x ) d x
Question
The function f(x)={x if x<02+5x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 + 5 x & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=1x = 1 to

A) 7
B) 1
C) 1/2
D) 3- 3
E) unknown
Question
Using the eigenfunctions of the previous problem, the Fourier-Legendre series for the function f(x)f ( x ) is n=1cnPn(x)\sum _ { n = 1 } ^ { \infty } c _ { n } P _ { n } ( x ) , where

A) cn=(2n+1)11xf(x)Pn(x)dxc _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } x f ( x ) P _ { n } ( x ) d x
B) cn=(2n+1)11f(x)Pn(x)dxc _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x
C) cn=(2n+1)11f(x)Pn(x)dx/2c _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x / 2
D) cn=(2n1)11f(x)Pn(x)dx/2c _ { n } = ( 2 n - 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x / 2
E) cn=(2n1)11xf(x)Pn(x)dxc _ { n } = ( 2 n - 1 ) \int _ { - 1 } ^ { 1 } x f ( x ) P _ { n } ( x ) d x
Question
The function f(x)={x if x<02x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 - x & \text { if } x > 0\end{array} \right\} is Select all that apply.

A) odd
B) even
C) neither even nor odd
D) continuous on [π,π][ - \pi , \pi ]
E) discontinuous on [π,π][ - \pi , \pi ]
Question
An example of a regular Sturm-Liouville problem is y+λy=0y ^ { \prime \prime } + \lambda y = 0 with boundary conditions Select all that apply.

A) y(0)+y(1)=0,y(1)=0y ( 0 ) + y ^ { \prime } ( 1 ) = 0 , y ( 1 ) = 0
B) y(0)=0,y(1)=0y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0
C) y(1)=0,y(1)=0y ( 1 ) = 0 , y ^ { \prime } ( 1 ) = 0
D) y(0)=0,y(1)+y(1)=0y ^ { \prime } ( 0 ) = 0 , y ( 1 ) + y ^ { \prime } ( 1 ) = 0
E) yy is bounded on [1,1][ - 1,1 ]
Question
The function f(x)={x if x<02+5x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 + 5 x & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=0x = 0 to

A) 0
B) 1
C) 1/2
D) 2
E) unknown
Question
The Fourier series of the function f(x)=x2f ( x ) = x ^ { 2 } on [1,1][ - 1,1 ] is

A) n14(1)nsin(nπx)/(n2π2)+n14(1)ncos(nπx)/(n2π2)\sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right) + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
B) n=14(1)nsin(nπx)/(n2π2)\sum _ { n = 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
C) n=14(1)ncos(nπx)/(n2π2)\sum _ { n = 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) 1/3+n14(1)nsin(nπx)/(n2π2)1 / 3 + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
E) 1/3+n14(1)ncos(nπx)/(n2π2)1 / 3 + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
Question
The Fourier Series of a function ff defined on [p,p][ - p , p ] is f(x)=a0/2+n1(ancos(nπx/p)+bnsin(nπx/p))f ( x ) = a _ { 0 } / 2 + \sum _ { n - 1 } ^ { \infty } \left( a _ { n } \cos ( n \pi x / p ) + b _ { n } \sin ( n \pi x / p ) \right) where Select all that apply.

A) a0=ppf(x)dx/pa _ { 0 } = \int _ { -p } ^ { p } f ( x ) d x / p
B) an=ppf(x)cos(nπx/p)dx/pa _ { n } = \int _ { -p} ^ { p } f ( x ) \cos ( n \pi x / p ) d x / p
C) an=ppf(x)sin(nπx/p)dx/pa _ { n } = \int _ { - p } ^ { p } f ( x ) \sin ( n \pi x / p ) d x / p
D) bn=ppf(x)cos(nπx/p)dx/pb _ { n } = \int _ { - p } ^ { p } f ( x ) \cos ( n \pi x / p ) d x / p
E) bn=ppf(x)sin(nπx/p)dx/pb _ { n } = \int _ { - p } ^ { p } f ( x ) \sin ( n \pi x / p ) d x / p
Question
Using the eigenfunctions of the previous problem, written as gn(x)g _ { n } ( x ) , the Fourier-Bessel series for the function f(x)f ( x ) is n=1cngn(x)\sum _ { n = 1 } ^ { \infty } c _ { n } g _ { n } ( x ) , where

A) cn=02f(x)gn(x)dx/02gn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
B) cn=02xf(x)gn(x)dx/02gn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } x f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
C) cn=02f(x)gn(x)dx/02xgn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x g _ { n } ^ { 2 } ( x ) d x
D) cn=02xf(x)gn(x)dx/02xgn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } x f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x g _ { n } ^ { 2 } ( x ) d x
E) cn=02x2f(x)gn(x)dx/02x2gn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } x ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
Question
The solution of the eigenvalue problem rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded, R(3)=0R ^ { \prime } ( 3 ) = 0 is (J0t(zn)=0)\left( J _ { 0 } ^ { t } \left( z _ { n } \right) = 0 \right)

A) λ=zn2,R=J0(znr),n=1,2,3,\lambda = z _ { n } ^ { 2 } , R = J _ { 0 } \left( z _ { n } r \right) , n = 1,2,3 , \ldots
B) λ=zn2/9,R=J0(znr/3),n=1,2,3,\lambda = z _ { n } ^ { 2 } / 9 , R = J _ { 0 } \left( z _ { n } r / 3 \right) , n = 1,2,3 , \ldots
C) λ=zn,R=J0(znr),n=1,2,3,\lambda = z _ { n } , R = J _ { 0 } \left( z _ { n } r \right) , n = 1,2,3 , \ldots
D) λ=zn/3,R=J0(znr/3),n=1,2,3,\lambda = z _ { n } / 3 , R = J _ { 0 } \left( z _ { n } r / 3 \right) , n = 1,2,3 , \ldots
E) λ=zn,R=J0(r),n=1,2,3,\lambda = z _ { n } , R = J _ { 0 } ( r ) , n = 1,2,3 , \ldots
Question
The square norm of the function f(x)=1xf ( x ) = 1 - x on the interval [0,2][ 0,2 ] is

A) 2/3
B) 2/3\sqrt { 2 / 3 }
C) 1/3
D) 1/3\sqrt { 1 / 3 }
E) 0
Question
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 is

A) λ=nπ,y=cos(nπx),n=0,1,2,\lambda = n \pi , y = \cos ( n \pi x ) , n = 0,1,2 , \ldots
B) λ=nπ,y=sin(nπx),n=1,2,3,\lambda = n \pi , y = \sin ( n \pi x ) , n = 1,2,3 , \ldots
C) λ=n2π2,y=cos(nπx),n=0,1,2,\lambda = n ^ { 2 } \pi ^ { 2 } , y = \cos ( n \pi x ) , n = 0,1,2 , \ldots
D) λ=n2π2,y=sin(nπx),n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , y = \sin ( n \pi x ) , n = 1,2,3 , \ldots
E) λ=nπ,y=cos(nπx)+sin(nπx),n=1,2,3,\lambda = n \pi , y = \cos ( n \pi x ) + \sin ( n \pi x ) , n = 1,2,3 , \ldots
Question
Consider the differential equation y+λy=0y ^ { \prime \prime } + \lambda y = 0 . Examples of boundary conditions for this equation that make a regular Sturm-Liouville problem are Select all that apply.

A) y(0)=0,y(1)=0y ( 0 ) = 0 , y ( 1 ) = 0
B) y(0)=0,y(1)=0y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0
C) y(0)=0,y(0)=0y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0
D) y(0)=0,y(1)+y(1)=0y ^ { \prime } ( 0 ) = 0 , y ( 1 ) + y ^ { \prime } ( 1 ) = 0
E) y(0)+y(1)=0,y(1)=0y ( 0 ) + y ( 1 ) = 0 , y ^ { \prime } ( 1 ) = 0
Question
The Fourier series of the function f(x)=xf ( x ) = x on [1,1][ - 1,1 ] is

A) n=0(1)n2cos(nπx)/(nπ)\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 2 \cos ( n \pi x ) / ( n \pi )
B) n=0(1)n+12cos(nπx)/(nπ)\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 \cos ( n \pi x ) / ( n \pi )
C) n1(1)n2sin(nπx)/(nπ)\sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 \sin ( n \pi x ) / ( n \pi )
D) n1(1)n+12sin(nπx)/(nπ)\sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 \sin ( n \pi x ) / ( n \pi )
E) n1(1)n+1sin(nπx)/(nπ)\sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } \sin ( n \pi x ) / ( n \pi )
Question
The square norm of the function f(x)=sinxf ( x ) = \sin x on the interval [0,π][ 0 , \pi ] is

A) 1
B) π\pi
C) π/2\pi / 2
D) π/4\pi / 4
E) 0
Question
In order to be assured by a theorem that the Fourier Series of ff on [a,b][ a , b ] converges to ff , which of the following conditions need to be satisfied? Select all that apply.

A) ff is continuous on [a,b][ a , b ]
B) ff ^ { \prime } is continuous on [a,b][ a , b ]
C) ff is piecewise continuous on [a,b][ a , b ]
D) ff ^ { \prime } is piecewise continuous on [a,b][ a , b ]
E) ff is integrable on [a,b][ a , b ]
Question
The function f(x)=xf ( x ) = | x | is Select all that apply.

A) odd
B) even
C) neither even nor odd
D) continuous on [π,π][ - \pi , \pi ]
E) discontinuous on [π,π][ - \pi , \pi ]
Question
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is a regular Sturm-Liouville problem under certain conditions, including Select all that apply.

A) pp , qq , rr are continuous on [a,b][ a , b ]
B) r(x)>0r ( x ) > 0 and p(x)<0p ( x ) < 0 on [a,b][ a , b ]
C) r(x)<0r ( x ) < 0 and p(x)>0p ( x ) > 0 on [a,b][ a , b ]
D) A12+B120A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } \neq 0
E) A1A20A _ { 1 } A _ { 2 } \neq 0
Question
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime } ( \pi ) = 0 is

A) λ=n,y=cos(nx),n=0,1,2,\lambda = n , y = \cos ( n x ) , n = 0,1,2 , \ldots
B) λ=n,y=sin(nx),n=1,2,3,\lambda = n , y = \sin ( n x ) , n = 1,2,3 , \ldots
C) λ=n2,y=cos(nx),n=0,1,2,\lambda = n ^ { 2 } , y = \cos ( n x ) , n = 0,1,2 , \ldots
D) λ=n2,y=sin(nx),n=1,2,3,\lambda = n ^ { 2 } , y = \sin ( n x ) , n = 1,2,3 , \ldots
E) λ=n,y=cos(nx)+sin(nx),n=1,2,3,\lambda = n , y = \cos ( n x ) + \sin ( n x ) , n = 1,2,3 , \ldots
Question
Which of the following differential equations are in self-adjoint form? Select all that apply.

A) r(x)y+r(x)y+λy=0r ^ { \prime } ( x ) y ^ { \prime \prime } + r ( x ) y ^ { \prime } + \lambda y = 0
B) y+y+λy=0y ^ { \prime \prime } + y ^ { \prime } + \lambda y = 0
C) (1x)y2xy+λy=0( 1 - x ) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0
D) x2y+xy+(x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - n ^ { 2 } \right) y = 0
E) y+λy=0y ^ { \prime \prime } + \lambda y = 0
Question
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is a regular Sturm-Liouville problem under which of the following conditions. Select all that apply.

A) r=1/(xa)r = 1 / ( x - a ) are continuous on [a,b][ a , b ]
B) p(x)=xap ( x ) = x - a on [a,b][ a , b ]
C) q(x)=0q ( x ) = 0 on [a,b][ a , b ]
D) A1A2=0A _ { 1 } A _ { 2 } = 0
E) A12+B12=0A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } = 0
Question
The function f(x)={0 if x<01 if x>0}f ( x ) = \left\{ \begin{array} { l l } 0 & \text { if } x < 0 \\1 & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=1x = 1 to

A) 0
B) 1
C) 1/2
D) 1- 1
E) unknown
Question
The Fourier series of an odd function might Select all that apply.

A) contain sine terms
B) contain cosine terms
C) contain a constant term
D) contain sine and cosine terms
E) contain sine, cosine, and constant terms
Question
The Fourier series of the function f(x)=xf ( x ) = | x | on [2,2][ - 2,2 ] is Select all that apply.

A) contains cosine terms
B) contains sine terms
C) contains sine and cosine terms
D) contains a constant term
E) contains sine, cosine, and constant terms
Question
The function f(x)={0 if x<01 if x>0}f ( x ) = \left\{ \begin{array} { l l } 0 & \text { if } x < 0 \\1 & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=0x = 0 to

A) 0
B) 1
C) 1/2
D) 1- 1
E) unknown
Question
Consider the parameterized Bessel's differential equation x2y+xy+(α2x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( \alpha ^ { 2 } x ^ { 2 } - n ^ { 2 } \right) y = 0 along with the conditions y(0)y ( 0 ) is bounded, y(2)=0y ( 2 ) = 0 . The solution of this eigenvalue problem is (Jn(zn)=0)\left( J _ { n } \left( z _ { n } \right) = 0 \right)

A) α=zn/2,y=Jn(znx/2),n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
B) α=zn2/4,y=Jn(znx/2),n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
C) α=zn,y=Jn(zn/2x),n=1,2,3,\alpha = z _ { n } , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
D) α=zn/2,y=Jn(zn/2x),n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
E) α=zn2/4,y=Jn(zn/2x),n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
Question
The Fourier coeficients of the function f(x)=xf ( x ) = x on [1,1][ - 1,1 ] are

A) a0=2/π,bn=0,an=0a _ { 0 } = - 2 / \pi , b _ { n } = 0 , a _ { n } = 0
B) a0=0,bn=(1)n2/(nπ),an=0a _ { 0 } = 0 , b _ { n } = ( - 1 ) ^ { n } 2 / ( n \pi ) , a _ { n } = 0
C) a0=0,bn=(1)n+12/(nπ),an=0a _ { 0 } = 0 , b _ { n } = ( - 1 ) ^ { n + 1 } 2 / ( n \pi ) , a _ { n } = 0
D) a0=0,bn=0,an=(1)n2/(nπ)a _ { 0 } = 0 , b _ { n } = 0 , a _ { n } = ( - 1 ) ^ { n } 2 / ( n \pi )
E) a0=0,bn=0,an=(1)n+12/(nπ)a _ { 0 } = 0 , b _ { n } = 0 , a _ { n } = ( - 1 ) ^ { n + 1 } 2 / ( n \pi )
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/40
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 11: Orthogonal Functions and Fourier Series
1
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0 is

A) λ=(n1/2)π,y=cos((n1/2)πx)+sin((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \cos ( ( n - 1 / 2 ) \pi x ) + \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
B) λ=(n1/2)π,y=cos((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \cos ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
C) λ=(n1/2)π,y=sin((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) \pi , y = \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
D) λ=(n1/2)2π2,y=cos((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } , y = \cos ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
E) λ=(n1/2)2π2,y=sin((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } , y = \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
λ=(n1/2)2π2,y=sin((n1/2)πx),n=1,2,3,\lambda = ( n - 1 / 2 ) ^ { 2 } \pi ^ { 2 } , y = \sin ( ( n - 1 / 2 ) \pi x ) , n = 1,2,3 , \ldots
2
In order to be assured by a theorem that the Fourier Series of ff on [a,b][ a , b ] converges at xx , to (f(x+)+f(x))/2( f ( x + ) + f ( x - ) ) / 2 which of the following conditions need to be satisfied? Select all that apply.

A) ff is continuous on [a,b][ a , b ]
B) ff ^ { \prime } is continuous on [a,b][ a , b ]
C) ff is piecewise continuous on [a,b][ a , b ]
D) ff ^ { \prime } is piecewise continuous on [a,b][ a , b ]
E) ff is integrable on [a,b][ a , b ]
ff is piecewise continuous on [a,b][ a , b ]
ff ^ { \prime } is piecewise continuous on [a,b][ a , b ]
ff is integrable on [a,b][ a , b ]
3
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is a regular Sturm-Liouville problem under certain conditions, including Select all that apply.

A) pp , qq , rr piecewise continuous on [a,b][ a , b ]
B) r(x)>0r ( x ) > 0 and p(x)>0p ( x ) > 0 on [a,b][ a , b ]
C) r(x)<0r ( x ) < 0 and p(x)>0p ( x ) > 0 on [a,b][ a , b ]
D) A1B10A _ { 1 } B _ { 1 } \neq 0
E) A12+B120A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } \neq 0
r(x)>0r ( x ) > 0 and p(x)>0p ( x ) > 0 on [a,b][ a , b ]
A12+B120A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } \neq 0
4
The square norm of the function f(x)=cos(3x)f ( x ) = \cos ( 3 x ) on the interval [0,π/2][ 0 , \pi / 2 ] is

A) 1
B) π\pi
C) π/2\pi / 2
D) π/4\pi / 4
E) 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
5
The Fourier series of an even function might Select all that apply.

A) contain sine terms
B) contain cosine terms
C) contain a constant term
D) contain sine and cosine terms
E) contain sine, cosine, and constant terms
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
6
The square norm of the function f(x)=x2f ( x ) = x ^ { 2 } on the interval [0,1][ 0,1 ] is

A) 1/2
B) 1/3
C) 1/5
D) 1
E) 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
7
The differential equation (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0 is

A) Legendre's equation
B) Bessel's equation
C) the Fourier-Bessel
D) the hypergeometric
E) none of the above
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
8
The Fourier series of the function f(x)={x if x<02x if x>0}f ( x ) = \left\{ \begin{aligned}x & \text { if } x < 0 \\2 - x & \text { if } x > 0\end{aligned} \right\} on [2,2][ - 2,2 ] are Select all that apply.

A) contains only cosine terms
B) contains only sine terms
C) contains sine and cosine terms
D) contains a constant term
E) contains sine, cosine, and constant terms
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
9
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( \pi ) = 0 is

A) λ=n2,y=cos(nx),n=0,1,2,\lambda = n ^ { 2 } , y = \cos ( n x ) , n = 0,1,2 , \ldots
B) λ=n2,y=sin(nx),n=1,2,3,\lambda = n ^ { 2 } , y = \sin ( n x ) , n = 1,2,3 , \ldots
C) λ=n,y=cos(nx),n=0,1,2,\lambda = n , y = \cos ( n x ) , n = 0,1,2 , \ldots
D) λ=n,y=sin(nx),n=1,2,3,\lambda = n , y = \sin ( n x ) , n = 1,2,3 , \ldots
E) λ=n,y=cos(nx)+sin(nx),n=1,2,3,\lambda = n , y = \cos ( n x ) + \sin ( n x ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
10
The Fourier coeficients of the function f(x)=x2f ( x ) = x ^ { 2 } on [1,1][ - 1,1 ] are Select all that apply.

A) a0=2/3a _ { 0 } = 2 / 3
B) an=0a _ { n } = 0
C) an=4(1)n/(n2π2)a _ { n } = 4 ( - 1 ) ^ { n } / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) bn=0b _ { n } = 0
E) bn=4(1)n/(n2π2)b _ { n } = 4 ( - 1 ) ^ { n } / \left( n ^ { 2 } \pi ^ { 2 } \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
11
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is not a regular Sturm-Liouville problem under which of the following conditions. Select all that apply.

A) r=1/(xa)r = 1 / ( x - a ) on (a,b)( a , b )
B) q(x)=0q ( x ) = 0 on [a,b][ a , b ]
C) p(x)=xap ( x ) = x - a on [a,b][ a , b ]
D) A1A2=0A _ { 1 } A _ { 2 } = 0
E) A12+B12=0A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
12
The solution of the eigenvalue problem (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0 where yy is bounded on [1,1][ - 1,1 ] , is

A) λ=n,y=Pn(x),n=1,2,3,\lambda = n , y = P _ { n } ( x ) , n = 1,2,3 ,
B) λ=n1,y=Pn(x),n=1,2,3,\lambda = n - 1 , y = P _ { n } ( x ) , n = 1,2,3 , \ldots
C) λ=n+1,y=Pn(x),n=1,2,3,\lambda = n + 1 , y = P _ { n } ( x ) , n = 1,2,3 , \ldots
D) λ=n2,y=Pn(x),n=1,2,3,.\lambda = n ^ { 2 } , y = P _ { n } ( x ) , n = 1,2,3 , .
E) λ=n(n+1),y=Pn(x),n=1,2,3,\lambda = n ( n + 1 ) , y = P _ { n } ( x ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
13
Which of the following differential equations are in self-adjoint form? Select all that apply.

A) r(x)y+r(x)y+λy=0r ( x ) y ^ { \prime \prime } + r ^ { \prime } ( x ) y ^ { \prime } + \lambda y = 0
B) y+y+λy=0y ^ { \prime \prime } + y ^ { \prime } + \lambda y = 0
C) (1x2)y2xy+λy=0\left( 1 - x ^ { 2 } \right) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0
D) y+λy=0y ^ { \prime \prime } + \lambda y = 0
E) x2y+xy+(x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - n ^ { 2 } \right) y = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
14
The Fourier Series of a function f(x)=xf ( x ) = x defined on [1,1][ - 1,1 ] is f(x)=a0/2+n1(ancos(nπx)+bnsin(nπx))f ( x ) = a _ { 0 } / 2 + \sum _ { n - 1 } ^ { \infty } \left( a _ { n } \cos ( n \pi x ) + b _ { n } \sin ( n \pi x ) \right) where Select all that apply.

A) a0=1a _ { 0 } = 1
B) an=0a _ { n } = 0
C) an=11xsin(nπx)dxa _ { n } = \int _ { - 1 } ^ { 1 } x \sin ( n \pi x ) d x
D) bn=0b _ { n } = 0
E) bn=11xsin(nπx)dxb _ { n } = \int _ { - 1 } ^ { 1 } x \sin ( n \pi x ) d x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
15
The function f(x)={x if x<02+5x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 + 5 x & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=1x = 1 to

A) 7
B) 1
C) 1/2
D) 3- 3
E) unknown
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
16
Using the eigenfunctions of the previous problem, the Fourier-Legendre series for the function f(x)f ( x ) is n=1cnPn(x)\sum _ { n = 1 } ^ { \infty } c _ { n } P _ { n } ( x ) , where

A) cn=(2n+1)11xf(x)Pn(x)dxc _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } x f ( x ) P _ { n } ( x ) d x
B) cn=(2n+1)11f(x)Pn(x)dxc _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x
C) cn=(2n+1)11f(x)Pn(x)dx/2c _ { n } = ( 2 n + 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x / 2
D) cn=(2n1)11f(x)Pn(x)dx/2c _ { n } = ( 2 n - 1 ) \int _ { - 1 } ^ { 1 } f ( x ) P _ { n } ( x ) d x / 2
E) cn=(2n1)11xf(x)Pn(x)dxc _ { n } = ( 2 n - 1 ) \int _ { - 1 } ^ { 1 } x f ( x ) P _ { n } ( x ) d x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
17
The function f(x)={x if x<02x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 - x & \text { if } x > 0\end{array} \right\} is Select all that apply.

A) odd
B) even
C) neither even nor odd
D) continuous on [π,π][ - \pi , \pi ]
E) discontinuous on [π,π][ - \pi , \pi ]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
18
An example of a regular Sturm-Liouville problem is y+λy=0y ^ { \prime \prime } + \lambda y = 0 with boundary conditions Select all that apply.

A) y(0)+y(1)=0,y(1)=0y ( 0 ) + y ^ { \prime } ( 1 ) = 0 , y ( 1 ) = 0
B) y(0)=0,y(1)=0y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0
C) y(1)=0,y(1)=0y ( 1 ) = 0 , y ^ { \prime } ( 1 ) = 0
D) y(0)=0,y(1)+y(1)=0y ^ { \prime } ( 0 ) = 0 , y ( 1 ) + y ^ { \prime } ( 1 ) = 0
E) yy is bounded on [1,1][ - 1,1 ]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
19
The function f(x)={x if x<02+5x if x>0}f ( x ) = \left\{ \begin{array} { c c } x & \text { if } x < 0 \\2 + 5 x & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=0x = 0 to

A) 0
B) 1
C) 1/2
D) 2
E) unknown
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
20
The Fourier series of the function f(x)=x2f ( x ) = x ^ { 2 } on [1,1][ - 1,1 ] is

A) n14(1)nsin(nπx)/(n2π2)+n14(1)ncos(nπx)/(n2π2)\sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right) + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
B) n=14(1)nsin(nπx)/(n2π2)\sum _ { n = 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
C) n=14(1)ncos(nπx)/(n2π2)\sum _ { n = 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) 1/3+n14(1)nsin(nπx)/(n2π2)1 / 3 + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \sin ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
E) 1/3+n14(1)ncos(nπx)/(n2π2)1 / 3 + \sum _ { n - 1 } ^ { \infty } 4 ( - 1 ) ^ { n } \cos ( n \pi x ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
21
The Fourier Series of a function ff defined on [p,p][ - p , p ] is f(x)=a0/2+n1(ancos(nπx/p)+bnsin(nπx/p))f ( x ) = a _ { 0 } / 2 + \sum _ { n - 1 } ^ { \infty } \left( a _ { n } \cos ( n \pi x / p ) + b _ { n } \sin ( n \pi x / p ) \right) where Select all that apply.

A) a0=ppf(x)dx/pa _ { 0 } = \int _ { -p } ^ { p } f ( x ) d x / p
B) an=ppf(x)cos(nπx/p)dx/pa _ { n } = \int _ { -p} ^ { p } f ( x ) \cos ( n \pi x / p ) d x / p
C) an=ppf(x)sin(nπx/p)dx/pa _ { n } = \int _ { - p } ^ { p } f ( x ) \sin ( n \pi x / p ) d x / p
D) bn=ppf(x)cos(nπx/p)dx/pb _ { n } = \int _ { - p } ^ { p } f ( x ) \cos ( n \pi x / p ) d x / p
E) bn=ppf(x)sin(nπx/p)dx/pb _ { n } = \int _ { - p } ^ { p } f ( x ) \sin ( n \pi x / p ) d x / p
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
22
Using the eigenfunctions of the previous problem, written as gn(x)g _ { n } ( x ) , the Fourier-Bessel series for the function f(x)f ( x ) is n=1cngn(x)\sum _ { n = 1 } ^ { \infty } c _ { n } g _ { n } ( x ) , where

A) cn=02f(x)gn(x)dx/02gn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
B) cn=02xf(x)gn(x)dx/02gn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } x f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
C) cn=02f(x)gn(x)dx/02xgn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x g _ { n } ^ { 2 } ( x ) d x
D) cn=02xf(x)gn(x)dx/02xgn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } x f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x g _ { n } ^ { 2 } ( x ) d x
E) cn=02x2f(x)gn(x)dx/02x2gn2(x)dxc _ { n } = \int _ { 0 } ^ { 2 } x ^ { 2 } f ( x ) g _ { n } ( x ) d x / \int _ { 0 } ^ { 2 } x ^ { 2 } g _ { n } ^ { 2 } ( x ) d x
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
23
The solution of the eigenvalue problem rR+R+rλR=0,R(0)r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded, R(3)=0R ^ { \prime } ( 3 ) = 0 is (J0t(zn)=0)\left( J _ { 0 } ^ { t } \left( z _ { n } \right) = 0 \right)

A) λ=zn2,R=J0(znr),n=1,2,3,\lambda = z _ { n } ^ { 2 } , R = J _ { 0 } \left( z _ { n } r \right) , n = 1,2,3 , \ldots
B) λ=zn2/9,R=J0(znr/3),n=1,2,3,\lambda = z _ { n } ^ { 2 } / 9 , R = J _ { 0 } \left( z _ { n } r / 3 \right) , n = 1,2,3 , \ldots
C) λ=zn,R=J0(znr),n=1,2,3,\lambda = z _ { n } , R = J _ { 0 } \left( z _ { n } r \right) , n = 1,2,3 , \ldots
D) λ=zn/3,R=J0(znr/3),n=1,2,3,\lambda = z _ { n } / 3 , R = J _ { 0 } \left( z _ { n } r / 3 \right) , n = 1,2,3 , \ldots
E) λ=zn,R=J0(r),n=1,2,3,\lambda = z _ { n } , R = J _ { 0 } ( r ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
24
The square norm of the function f(x)=1xf ( x ) = 1 - x on the interval [0,2][ 0,2 ] is

A) 2/3
B) 2/3\sqrt { 2 / 3 }
C) 1/3
D) 1/3\sqrt { 1 / 3 }
E) 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
25
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 is

A) λ=nπ,y=cos(nπx),n=0,1,2,\lambda = n \pi , y = \cos ( n \pi x ) , n = 0,1,2 , \ldots
B) λ=nπ,y=sin(nπx),n=1,2,3,\lambda = n \pi , y = \sin ( n \pi x ) , n = 1,2,3 , \ldots
C) λ=n2π2,y=cos(nπx),n=0,1,2,\lambda = n ^ { 2 } \pi ^ { 2 } , y = \cos ( n \pi x ) , n = 0,1,2 , \ldots
D) λ=n2π2,y=sin(nπx),n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , y = \sin ( n \pi x ) , n = 1,2,3 , \ldots
E) λ=nπ,y=cos(nπx)+sin(nπx),n=1,2,3,\lambda = n \pi , y = \cos ( n \pi x ) + \sin ( n \pi x ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
26
Consider the differential equation y+λy=0y ^ { \prime \prime } + \lambda y = 0 . Examples of boundary conditions for this equation that make a regular Sturm-Liouville problem are Select all that apply.

A) y(0)=0,y(1)=0y ( 0 ) = 0 , y ( 1 ) = 0
B) y(0)=0,y(1)=0y ( 0 ) = 0 , y ^ { \prime } ( 1 ) = 0
C) y(0)=0,y(0)=0y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0
D) y(0)=0,y(1)+y(1)=0y ^ { \prime } ( 0 ) = 0 , y ( 1 ) + y ^ { \prime } ( 1 ) = 0
E) y(0)+y(1)=0,y(1)=0y ( 0 ) + y ( 1 ) = 0 , y ^ { \prime } ( 1 ) = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
27
The Fourier series of the function f(x)=xf ( x ) = x on [1,1][ - 1,1 ] is

A) n=0(1)n2cos(nπx)/(nπ)\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } 2 \cos ( n \pi x ) / ( n \pi )
B) n=0(1)n+12cos(nπx)/(nπ)\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 \cos ( n \pi x ) / ( n \pi )
C) n1(1)n2sin(nπx)/(nπ)\sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 \sin ( n \pi x ) / ( n \pi )
D) n1(1)n+12sin(nπx)/(nπ)\sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 \sin ( n \pi x ) / ( n \pi )
E) n1(1)n+1sin(nπx)/(nπ)\sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } \sin ( n \pi x ) / ( n \pi )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
28
The square norm of the function f(x)=sinxf ( x ) = \sin x on the interval [0,π][ 0 , \pi ] is

A) 1
B) π\pi
C) π/2\pi / 2
D) π/4\pi / 4
E) 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
29
In order to be assured by a theorem that the Fourier Series of ff on [a,b][ a , b ] converges to ff , which of the following conditions need to be satisfied? Select all that apply.

A) ff is continuous on [a,b][ a , b ]
B) ff ^ { \prime } is continuous on [a,b][ a , b ]
C) ff is piecewise continuous on [a,b][ a , b ]
D) ff ^ { \prime } is piecewise continuous on [a,b][ a , b ]
E) ff is integrable on [a,b][ a , b ]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
30
The function f(x)=xf ( x ) = | x | is Select all that apply.

A) odd
B) even
C) neither even nor odd
D) continuous on [π,π][ - \pi , \pi ]
E) discontinuous on [π,π][ - \pi , \pi ]
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
31
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is a regular Sturm-Liouville problem under certain conditions, including Select all that apply.

A) pp , qq , rr are continuous on [a,b][ a , b ]
B) r(x)>0r ( x ) > 0 and p(x)<0p ( x ) < 0 on [a,b][ a , b ]
C) r(x)<0r ( x ) < 0 and p(x)>0p ( x ) > 0 on [a,b][ a , b ]
D) A12+B120A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } \neq 0
E) A1A20A _ { 1 } A _ { 2 } \neq 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
32
The solution of the eigenvalue problem y+λy=0,y(0)=0,y(π)=0y ^ { \prime \prime } + \lambda y = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime } ( \pi ) = 0 is

A) λ=n,y=cos(nx),n=0,1,2,\lambda = n , y = \cos ( n x ) , n = 0,1,2 , \ldots
B) λ=n,y=sin(nx),n=1,2,3,\lambda = n , y = \sin ( n x ) , n = 1,2,3 , \ldots
C) λ=n2,y=cos(nx),n=0,1,2,\lambda = n ^ { 2 } , y = \cos ( n x ) , n = 0,1,2 , \ldots
D) λ=n2,y=sin(nx),n=1,2,3,\lambda = n ^ { 2 } , y = \sin ( n x ) , n = 1,2,3 , \ldots
E) λ=n,y=cos(nx)+sin(nx),n=1,2,3,\lambda = n , y = \cos ( n x ) + \sin ( n x ) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
33
Which of the following differential equations are in self-adjoint form? Select all that apply.

A) r(x)y+r(x)y+λy=0r ^ { \prime } ( x ) y ^ { \prime \prime } + r ( x ) y ^ { \prime } + \lambda y = 0
B) y+y+λy=0y ^ { \prime \prime } + y ^ { \prime } + \lambda y = 0
C) (1x)y2xy+λy=0( 1 - x ) y ^ { \prime \prime } - 2 x y ^ { \prime } + \lambda y = 0
D) x2y+xy+(x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( x ^ { 2 } - n ^ { 2 } \right) y = 0
E) y+λy=0y ^ { \prime \prime } + \lambda y = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
34
The problem ddx[r(x)y]+(q(x)+λp(x))y=0,A1y(a)+B1y(a)=0,A2y(b)+B2y(b)=0\frac { d } { d x } \left[ r ( x ) y ^ { \prime } \right] + ( q ( x ) + \lambda p ( x ) ) y = 0 , A _ { 1 } y ( a ) + B _ { 1 } y ^ { \prime } ( a ) = 0 , A _ { 2 } y ( b ) + B _ { 2 } y ^ { \prime } ( b ) = 0 is a regular Sturm-Liouville problem under which of the following conditions. Select all that apply.

A) r=1/(xa)r = 1 / ( x - a ) are continuous on [a,b][ a , b ]
B) p(x)=xap ( x ) = x - a on [a,b][ a , b ]
C) q(x)=0q ( x ) = 0 on [a,b][ a , b ]
D) A1A2=0A _ { 1 } A _ { 2 } = 0
E) A12+B12=0A _ { 1 } ^ { 2 } + B _ { 1 } ^ { 2 } = 0
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
35
The function f(x)={0 if x<01 if x>0}f ( x ) = \left\{ \begin{array} { l l } 0 & \text { if } x < 0 \\1 & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=1x = 1 to

A) 0
B) 1
C) 1/2
D) 1- 1
E) unknown
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
36
The Fourier series of an odd function might Select all that apply.

A) contain sine terms
B) contain cosine terms
C) contain a constant term
D) contain sine and cosine terms
E) contain sine, cosine, and constant terms
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
37
The Fourier series of the function f(x)=xf ( x ) = | x | on [2,2][ - 2,2 ] is Select all that apply.

A) contains cosine terms
B) contains sine terms
C) contains sine and cosine terms
D) contains a constant term
E) contains sine, cosine, and constant terms
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
38
The function f(x)={0 if x<01 if x>0}f ( x ) = \left\{ \begin{array} { l l } 0 & \text { if } x < 0 \\1 & \text { if } x > 0\end{array} \right\} has a Fourier series on [2,2][ - 2,2 ] that converges at x=0x = 0 to

A) 0
B) 1
C) 1/2
D) 1- 1
E) unknown
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
39
Consider the parameterized Bessel's differential equation x2y+xy+(α2x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( \alpha ^ { 2 } x ^ { 2 } - n ^ { 2 } \right) y = 0 along with the conditions y(0)y ( 0 ) is bounded, y(2)=0y ( 2 ) = 0 . The solution of this eigenvalue problem is (Jn(zn)=0)\left( J _ { n } \left( z _ { n } \right) = 0 \right)

A) α=zn/2,y=Jn(znx/2),n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
B) α=zn2/4,y=Jn(znx/2),n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
C) α=zn,y=Jn(zn/2x),n=1,2,3,\alpha = z _ { n } , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
D) α=zn/2,y=Jn(zn/2x),n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
E) α=zn2/4,y=Jn(zn/2x),n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
40
The Fourier coeficients of the function f(x)=xf ( x ) = x on [1,1][ - 1,1 ] are

A) a0=2/π,bn=0,an=0a _ { 0 } = - 2 / \pi , b _ { n } = 0 , a _ { n } = 0
B) a0=0,bn=(1)n2/(nπ),an=0a _ { 0 } = 0 , b _ { n } = ( - 1 ) ^ { n } 2 / ( n \pi ) , a _ { n } = 0
C) a0=0,bn=(1)n+12/(nπ),an=0a _ { 0 } = 0 , b _ { n } = ( - 1 ) ^ { n + 1 } 2 / ( n \pi ) , a _ { n } = 0
D) a0=0,bn=0,an=(1)n2/(nπ)a _ { 0 } = 0 , b _ { n } = 0 , a _ { n } = ( - 1 ) ^ { n } 2 / ( n \pi )
E) a0=0,bn=0,an=(1)n+12/(nπ)a _ { 0 } = 0 , b _ { n } = 0 , a _ { n } = ( - 1 ) ^ { n + 1 } 2 / ( n \pi )
Unlock Deck
Unlock for access to all 40 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 40 flashcards in this deck.