Solved

Abby Kratz, a Market Specialist at the Market Research Firm

Question 99

Multiple Choice

Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is monthly household expenditures on groceries (in $'s) , and her independent variable is annual household income (in $1,000's) .Regression analysis of the data yielded the following tables.  Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is monthly household expenditures on groceries (in   <span class= Source  df  SS  MS F Regresssumm 17685099168509919.3444 Residual 97839.915871.1017 Total 1024690.91\begin{array}{|c|c|c|c|c|}\hline \text { Source } & \text { df } & \text { SS } & \text { MS } & F \\\hline \text { Regresssumm } & 1 & 7685099 & 1685099 & 19.3444 \\\hline \text { Residual } & 9 & 7839.915 & 871.1017 & \\\hline \text { Total } & 10 & 24690.91 & & \\\hline\end{array}
Sd=29.51448r2=0.682478\begin{array} { | l | } \hline S _ { \mathrm { d } } = 29.51448 \\\hline r ^ { 2 } = 0.682478 \\\hline\end{array} Abby's regression model is __________.
A)  Abby Kratz, a market specialist at the market research firm of Saez, Sikes, and Spitz, is analyzing household budget data collected by her firm.Abby's dependent variable is monthly household expenditures on groceries (in  = 39.15 + 2.79x<br>B) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00= 39.15 - 1.79x<br>C) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 1.79 + 39.15x<br>D) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = -1.79 + 39.15x<br>E) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 39.15 + 1.79xs) , and her independent variable is annual household income (in $1,000's) .Regression analysis of the data yielded the following tables.    \begin{array}{|c|c|c|c|c|} \hline \text { Source } & \text { df } & \text { SS } & \text { MS } & F \\ \hline \text { Regresssumm } & 1 & 7685099 & 1685099 & 19.3444 \\ \hline \text { Residual } & 9 & 7839.915 & 871.1017 & \\ \hline \text { Total } & 10 & 24690.91 & & \\ \hline \end{array}   \begin{array} { | l | }  \hline S _ { \mathrm { d } } = 29.51448 \\ \hline r ^ { 2 } = 0.682478 \\ \hline \end{array}  Abby's regression model is __________. A)   = 39.15 + 2.79x B)  = 39.15 - 1.79x C)   = 1.79 + 39.15x D)   = -1.79 + 39.15x E)   = 39.15 + 1.79x  Source  df  SS  MS F Regresssumm 17685099168509919.3444 Residual 97839.915871.1017 Total 1024690.91\begin{array}{|c|c|c|c|c|}\hline \text { Source } & \text { df } & \text { SS } & \text { MS } & F \\\hline \text { Regresssumm } & 1 & 7685099 & 1685099 & 19.3444 \\\hline \text { Residual } & 9 & 7839.915 & 871.1017 & \\\hline \text { Total } & 10 & 24690.91 & & \\\hline\end{array}
Sd=29.51448r2=0.682478\begin{array} { | l | } \hline S _ { \mathrm { d } } = 29.51448 \\\hline r ^ { 2 } = 0.682478 \\\hline\end{array} Abby's regression model is __________.
A) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 39.15 + 2.79x
B) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00= 39.15 - 1.79x
C) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 1.79 + 39.15x
D) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = -1.79 + 39.15x
E) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 39.15 + 1.79xs) , and her independent variable is annual household income (in $1,000's) .Regression analysis of the data yielded the following tables. \begin{array}{|c|c|c|c|c|} \hline \text { Source } & \text { df } & \text { SS } & \text { MS } & F \\ \hline \text { Regresssumm } & 1 & 7685099 & 1685099 & 19.3444 \\ \hline \text { Residual } & 9 & 7839.915 & 871.1017 & \\ \hline \text { Total } & 10 & 24690.91 & & \\ \hline \end{array} \begin{array} { | l | } \hline S _ { \mathrm { d } } = 29.51448 \\ \hline r ^ { 2 } = 0.682478 \\ \hline \end{array} Abby's regression model is __________. A) = 39.15 + 2.79x B) = 39.15 - 1.79x C) = 1.79 + 39.15x D) = -1.79 + 39.15x E) = 39.15 + 1.79x " class="answers-bank-image d-block" rel="preload" > = 39.15 + 2.79x
B) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00= 39.15 - 1.79x
C) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 1.79 + 39.15x
D) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = -1.79 + 39.15x
E) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 39.15 + 1.79xs) , and her independent variable is annual household income (in $1,000's) .Regression analysis of the data yielded the following tables. \begin{array}{|c|c|c|c|c|} \hline \text { Source } & \text { df } & \text { SS } & \text { MS } & F \\ \hline \text { Regresssumm } & 1 & 7685099 & 1685099 & 19.3444 \\ \hline \text { Residual } & 9 & 7839.915 & 871.1017 & \\ \hline \text { Total } & 10 & 24690.91 & & \\ \hline \end{array} \begin{array} { | l | } \hline S _ { \mathrm { d } } = 29.51448 \\ \hline r ^ { 2 } = 0.682478 \\ \hline \end{array} Abby's regression model is __________. A) = 39.15 + 2.79x B) = 39.15 - 1.79x C) = 1.79 + 39.15x D) = -1.79 + 39.15x E) = 39.15 + 1.79x " class="answers-bank-image d-block" rel="preload" >  Source  df  SS  MS F Regresssumm 17685099168509919.3444 Residual 97839.915871.1017 Total 1024690.91\begin{array}{|c|c|c|c|c|}\hline \text { Source } & \text { df } & \text { SS } & \text { MS } & F \\\hline \text { Regresssumm } & 1 & 7685099 & 1685099 & 19.3444 \\\hline \text { Residual } & 9 & 7839.915 & 871.1017 & \\\hline \text { Total } & 10 & 24690.91 & & \\\hline\end{array}
Sd=29.51448r2=0.682478\begin{array} { | l | } \hline S _ { \mathrm { d } } = 29.51448 \\\hline r ^ { 2 } = 0.682478 \\\hline\end{array} Abby's regression model is __________.


A) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 39.15 + 2.79x
B) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00= 39.15 - 1.79x
C) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 1.79 + 39.15x
D) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = -1.79 + 39.15x
E) 11efcd22_8a09_b9c8_b057_7d6699c46fc2_TB7041_00 = 39.15 + 1.79x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents