Solved

A Hospital Needs to Determine How Many Nurses to Hire

Question 70

Essay

A hospital needs to determine how many nurses to hire to cover a 24 hour period. The nurses must work 8 consecutive hours but can start work at the start of 6 different shifts. They are paid different wages depending on when they start their shifts. The number of nurses required per 4-hour time period and their wages are shown in the following table.
 Time period  Required # of Nurses  Wage ($/hr)12am4am20154am83016 am 8am12pm401312pm4pm50134pm44014pm8pm12am3015\begin{array}{lcc}\text { Time period } & \text { Required \# of Nurses } & \text { Wage }(\$ / \mathrm{hr}) \\\hline 12 \mathrm{am}-4 \mathrm{am} & 20 & 15 \\4 \mathrm{am}-8 & 30 & 16 \\\text { am } & & \\8 \mathrm{am}-12 \mathrm{pm} & 40 & 13 \\12 \mathrm{pm}-4 \mathrm{pm} & 50 & 13 \\4 \mathrm{pm}-4 & 40 & 14 \\\mathrm{pm}\\8 \mathrm{pm}-12 \mathrm{am}&30 & 15 \end{array}
What are the key formulas for this Excel spreadsheet implementation of the following formulation?
Let Xi=\quad X _ { i } = mumber of nurses warking in thme period i;i=1,6i ; i = 1,6
 MiN: 1X1+1X2+1X3+1X4+1X5+1X6 Subject ta: 1X1+1Xz301X2+1X3401X3+1X4501X4+1X5401X5+1X1301X1+1X120Xi0\begin{array} { l l } \text { MiN: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } + 1 \mathbf { X } _ { \mathbf { 6 } } \\\text { Subject ta: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { z } } \geq 30 \\& 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } \geq 40 \\& 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } \geq 50 \\& 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } \geq 40 \\& 1 \mathbf { X } _ { 5 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 30 \\& 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 20 \\& \mathbf { X } _ { \mathrm { i } } \geq 0\end{array}  A hospital needs to determine how many nurses to hire to cover a 24 hour period. The nurses must work 8 consecutive hours but can start work at the start of 6 different shifts. They are paid different wages depending on when they start their shifts. The number of nurses required per 4-hour time period and their wages are shown in the following table.   \begin{array}{lcc} \text { Time period } & \text { Required \# of Nurses } & \text { Wage }(\$ / \mathrm{hr}) \\ \hline 12 \mathrm{am}-4 \mathrm{am} & 20 & 15 \\ 4 \mathrm{am}-8 & 30 & 16 \\ \text { am } & & \\ 8 \mathrm{am}-12 \mathrm{pm} & 40 & 13 \\ 12 \mathrm{pm}-4 \mathrm{pm} & 50 & 13 \\ 4 \mathrm{pm}-4 & 40 & 14 \\ \mathrm{pm}\\ 8 \mathrm{pm}-12 \mathrm{am}&30 & 15   \end{array}   What are the key formulas for this Excel spreadsheet implementation of the following formulation?  Let  \quad X _ { i } =  mumber of nurses warking in thme period  i ; i = 1,6   \begin{array} { l l }  \text { MiN: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } + 1 \mathbf { X } _ { \mathbf { 6 } } \\ \text { Subject ta: } & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { z } } \geq 30 \\ & 1 \mathbf { X } _ { \mathbf { 2 } } + 1 \mathbf { X } _ { \mathbf { 3 } } \geq 40 \\ & 1 \mathbf { X } _ { \mathbf { 3 } } + 1 \mathbf { X } _ { 4 } \geq 50 \\ & 1 \mathbf { X } _ { 4 } + 1 \mathbf { X } _ { \mathbf { 5 } } \geq 40 \\ & 1 \mathbf { X } _ { 5 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 30 \\ & 1 \mathbf { X } _ { 1 } + 1 \mathbf { X } _ { \mathbf { 1 } } \geq 20 \\ & \mathbf { X } _ { \mathrm { i } } \geq 0 \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents