Solved

Table 14-16
the Superintendent of a School District Wanted to Predict

Question 11

Multiple Choice

Table 14-16
The superintendent of a school district wanted to predict the percentage of students passing a sixth-grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing) , daily average of the percentage of students attending class (% Attendance) , average teacher salary in dollars (Salaries) , and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Following is the multiple regression output with Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and
X3 = Spending:
 Model 1 Regression Statistics  R Square 0.8080 AdjustedR S quare 0.7568 Observations 20\begin{array}{ll}\text { Model } 1 \\\text { Regression Statistics } \\\hline \text { R Square }& 0.8080 \\\text { AdjustedR S quare }& 0.7568 \\\text { Observations } &20 \end{array}

ANOVA
 df SSMSF Signuficance F  Regression 4169503.424142375.8615.78742.96869E05 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{lrrccc} & \text { df } &{S S} & M S & F & \text { Signuficance F } \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 2.96869 E-05 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & \\\text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Standard LowerUpper CoefficientsError t Stat p -value90.0%90.0% Intercept 421.427777.86145.41257.2E05284.9327557.9227 X1 (Temperature) 4.50980.81295.54765.58E055.93493.0847X2 (Insulation)  14.90295.05082.95050.009923.75736.0485 X3 (Windows)  0.21514.86750.04420.96538.31818.7484 X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr} && \text { Standard } & & \text {Lower} & \text {Upper }\\& \text {Coefficients} & \text {Error} & \text { t Stat } & \text {p -value} & 90.0 \% & 90.0 \% \\ \hline \text { Intercept }& 421.4277 & 77.8614 & 5.4125 & 7.2 \mathrm{E}-05& 284.9327 & 557.9227 \\ \text { X{1} (Temperature) } & -4.5098 & 0.8129 & -5.5476 &5.58 \mathrm{E}-05 & -5.9349 & -3.0847 \\ \text {X{2} (Insulation) }& -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\ \text { X{3} (Windows) }& 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\ \text { X{4} (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702 \\\hline\end{array}

 Model 2Regression StatisticsR Square 0.7768Adjusted R Square 0.7506Observations 20\begin{array}{ll} \text { Model 2} \\\hline \text {Regression Statistics} \\\hline \text {R Square }& 0.7768\\ \text {Adjusted R Square }&0.7506 \\ \text {Observations }& 20 \\\hline\end{array}
ANOVA
 d f SS  MS SS Significance F Regression2162958.227781479.1129.59232.9036E06Residual 1746807.52222753.384Total 19209765.75\begin{array}{lrrrcc}\hline & \text { d f} & \text { SS } & \text { MS } & \text {SS } & \text {Significance F } \\\hline \text {Regression} & 2 & 162958.2277 & 81479.11 & 29.5923 & 2.9036 \mathrm{E}-06 \\ \text {Residual }& 17 & 46807.5222 & 2753.384 & & \\ \text {Total }& 19 & 209765.75 & & & \\\hline\end{array}

 Standard  Lower UpperCoefficients  Error  t Stat  p -value95%95%Intercept 489.322743.982611.12533.17E09396.5273582.1180 X1 (Temperature)  5.11030.69517.35151.13E066.57693.6437 X2 (Insulation)  14.71954.88643.01230.007825.02904.4099\begin{array}{lcccccc} && \text { Standard } & &\text { Lower} &\text { Upper} \\& \text {Coefficients }&\text { Error }&\text { t Stat }& \text { p -value} &95 \%& 95 \% \\\hline \text {Intercept }& 489.3227 & 43.982611 .1253 &3.17 \mathrm{E}-09& 396.5273 & 582.1180 \\\text { X{1} (Temperature) }& -5.1103 & 0.6951-7.3515 & 1.13 \mathrm{E}-06 & -6.5769 & -3.6437 \\\text { X{2} (Insulation) }& -14.7195 & 4.8864-3.0123 & 0.0078 & -25.0290 & -4.4099 \\\hline\end{array}


-Referring to Table 14-16, which of the following is a correct statement?


A) 60.29% of the total variation in the percentage of students passing the proficiency test can be explained by daily average of the percentage of students attending class holding constant the effect of average teacher salary, and instructional spending per pupil.
B) 60.29% of the total variation in the percentage of students passing the proficiency test can be explained by daily average of the percentage of students attending class, average teacher salary, and instructional spending per pupil after adjusting for the number of predictors and sample size.
C) 60.29% of the total variation in the percentage of students passing the proficiency test can be explained by daily average of the percentage of students attending class after adjusting for the effect of average teacher salary, and instructional spending per pupil.
D) 60.29% of the total variation in the percentage of students passing the proficiency test can be explained by daily average of the percentage of students attending class, average teacher salary, and instructional spending per pupil.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents