Solved

TABLE 13-12
the Manager of the Purchasing Department of a Large

Question 15

Multiple Choice

TABLE 13-12
The manager of the purchasing department of a large banking organization would like to develop a model to predict the amount of time (measured in hours) it takes to process invoices. Data are collected from a sample of 30 days, and the number of invoices processed and completion time in hours is recorded. Below is the regression output:
 Regression  Statistics  Multiple R 0.9947 R Square 0.8924 Adjusted R Square 0.8886 Standard Error 0.3342 Observations 30\begin{array} { l c } { \text { Regression } \text { Statistics } } \\\hline \text { Multiple R } & 0.9947 \\\text { R Square } & 0.8924 \\\text { Adjusted R Square } & 0.8886 \\\text { Standard Error } & 0.3342 \\\text { Observations } & 30 \\\hline\end{array}  ANOVA df SS  MS F Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072\begin{array}{l}\text { ANOVA }\\\begin{array} { l c c c c c } & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\\text { Regression } & 1 & 25.9438&25 .9438 & 232.2200&4 .3946 \mathrm { E } - 15 \\\text { Residual } & 28 & 3.12820 .1117 & \\\text { Total } & 29 & 29.072 \\\hline\end{array}\end{array}  Coefficients  Standard Enror t Stat p-value  Lower 95%  Upper 95%  Invoices 0.40240.12363.25590.00300.14920.6555 Processed 0.01260.000815.23884.3946E150.01090.0143\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Enror } & t \text { Stat } & p \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Invoices } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\text { Processed } & 0.0126 & 0.0008 & 15.2388 & 4.3946 \mathrm { E } 15 & 0.0109 & 0.0143\end{array}  Coefficients  Standard Enor  t Stat p-value  Lower 95%  Upper 95%  Invoices 0.40240.12363.25590.00300.14920.6555\begin{array}{rrrrrrr} & \text { Coefficients } & \text { Standard Enor } & \text { t Stat } & p \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Invoices } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555\end{array}
 TABLE 13-12 The manager of the purchasing department of a large banking organization would like to develop a model to predict the amount of time (measured in hours)  it takes to process invoices. Data are collected from a sample of 30 days, and the number of invoices processed and completion time in hours is recorded. Below is the regression output:   \begin{array} { l c }   { \text { Regression } \text { Statistics } } \\ \hline \text { Multiple R } & 0.9947 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R Square } & 0.8886 \\ \text { Standard Error } & 0.3342 \\ \text { Observations } & 30 \\ \hline \end{array}   \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c }  & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\ \text { Regression } & 1 & 25.9438&25 .9438 & 232.2200&4 .3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.12820 .1117 & \\ \text { Total } & 29 & 29.072 \\ \hline \end{array} \end{array}   \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Enror } & t \text { Stat } & p \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Invoices } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \text { Processed } & 0.0126 & 0.0008 & 15.2388 & 4.3946 \mathrm { E } 15 & 0.0109 & 0.0143 \end{array}   \begin{array}{rrrrrrr}  & \text { Coefficients } & \text { Standard Enor } & \text { t Stat } & p \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Invoices } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \end{array}       -Referring to Table 13-12, the 90% confidence interval for the average change in the amount of time needed as a result of processing one additional invoice is A)  narrower than [0.0109, 0.0143]. B)  wider than [0.0109, 0.0143]. C)  narrower than [0.1492, 0.6555]. D)  wider than [0.1492, 0.6555].  TABLE 13-12 The manager of the purchasing department of a large banking organization would like to develop a model to predict the amount of time (measured in hours)  it takes to process invoices. Data are collected from a sample of 30 days, and the number of invoices processed and completion time in hours is recorded. Below is the regression output:   \begin{array} { l c }   { \text { Regression } \text { Statistics } } \\ \hline \text { Multiple R } & 0.9947 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R Square } & 0.8886 \\ \text { Standard Error } & 0.3342 \\ \text { Observations } & 30 \\ \hline \end{array}   \begin{array}{l} \text { ANOVA }\\ \begin{array} { l c c c c c }  & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\ \text { Regression } & 1 & 25.9438&25 .9438 & 232.2200&4 .3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.12820 .1117 & \\ \text { Total } & 29 & 29.072 \\ \hline \end{array} \end{array}   \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Enror } & t \text { Stat } & p \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Invoices } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \text { Processed } & 0.0126 & 0.0008 & 15.2388 & 4.3946 \mathrm { E } 15 & 0.0109 & 0.0143 \end{array}   \begin{array}{rrrrrrr}  & \text { Coefficients } & \text { Standard Enor } & \text { t Stat } & p \text {-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Invoices } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \end{array}       -Referring to Table 13-12, the 90% confidence interval for the average change in the amount of time needed as a result of processing one additional invoice is A)  narrower than [0.0109, 0.0143]. B)  wider than [0.0109, 0.0143]. C)  narrower than [0.1492, 0.6555]. D)  wider than [0.1492, 0.6555].
-Referring to Table 13-12, the 90% confidence interval for the average change in the amount of time needed as a result of processing one additional invoice is


A) narrower than [0.0109, 0.0143].
B) wider than [0.0109, 0.0143].
C) narrower than [0.1492, 0.6555].
D) wider than [0.1492, 0.6555].

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents