Solved

Use the Addition Formulas To Calculate cos(π3)\cos \left( \frac { \pi } { 3 } \right)

Question 50

Multiple Choice

Use the addition formulas: sin(x+y) =sinxcosy+cosxsinysin(xy) =sinxcosycosxsinycos(x+y) =cosxcosysinxsinycos(xy) =cosxcosy+sinxsiny\begin{array} { l } \sin ( x + y ) = \sin x \cdot \cos y + \cos x \cdot \sin y \\\sin ( x - y ) = \sin x \cdot \cos y - \cos x \cdot \sin y \\\cos ( x + y ) = \cos x \cdot \cos y - \sin x \cdot \sin y \\\cos ( x - y ) = \cos x \cdot \cos y + \sin x \cdot \sin y\end{array}
To calculate cos(π3) \cos \left( \frac { \pi } { 3 } \right) , given that sin(π6) =12\sin \left( \frac { \pi } { 6 } \right) = \frac { 1 } { 2 } and cos(π6) =32\cos \left( \frac { \pi } { 6 } \right) = \frac { \sqrt { 3 } } { 2 } .


A) cos(π3) =0\cos \left( \frac { \pi } { 3 } \right) = 0
B) cos(π3) =32\cos \left( \frac { \pi } { 3 } \right) = \frac { \sqrt { 3 } } { 2 }
C) cos(π3) =12\cos \left( \frac { \pi } { 3 } \right) = \frac { 1 } { 2 }
D) cos(π3) =32\cos \left( \frac { \pi } { 3 } \right) = - \frac { \sqrt { 3 } } { 2 }
E) cos(π3) =12\cos \left( \frac { \pi } { 3 } \right) = - \frac { 1 } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents