Solved

The Demand for the Cyberpunk II Arcade Video Game Is q(t)=13,0001+0.6e0.5tq ( t ) = \frac { 13,000 } { 1 + 0.6 e ^ { - 0.5 t } }

Question 44

Multiple Choice

The demand for the Cyberpunk II arcade video game is modeled by the logistic curve q(t) =13,0001+0.6e0.5tq ( t ) = \frac { 13,000 } { 1 + 0.6 e ^ { - 0.5 t } }
Where q(t) q ( t ) is the total number of units sold t months after the game's introduction.

Use technology to estimate q(9) q ^ { \prime } ( 9 ) .

Assume that the manufacturers of Cyberpunk II sell each unit for $900. What is the company's marginal revenue, dR dq\frac { \mathrm { d } R } { \mathrm {~d} q }

Use the chain rule to estimate the rate at which revenue is growing 9 months after the introduction of the video game.

Please round each answer to the nearest whole number.


A) dq dt=43,dR dq=900,dR dt=38,734\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,734
B) dq dt=43,dR dq=900,dR dt=38,478\frac { \mathrm { d } q } { \mathrm {~d} t } = 43 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 38,478
C) dq dt=71,dR dq=700,dR dt=64,130\frac { \mathrm { d } q } { \mathrm {~d} t } = 71 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 700 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 64,130
D) dq dt=86,dR dq=800,dR dt=76,956\frac { \mathrm { d } q } { \mathrm {~d} t } = 86 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 800 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 76,956
E) dq dt=143,dR dq=900,dR dt=128,260\frac { \mathrm { d } q } { \mathrm {~d} t } = 143 , \frac { \mathrm { d } R } { \mathrm {~d} q } = 900 , \frac { \mathrm { d } R } { \mathrm {~d} t } = 128,260

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents