Solved

Let X1,X2, and X3X _ { 1 } , X _ { 2 } \text {, and } X _ { 3 }

Question 8

Essay

Let X1,X2, and X3X _ { 1 } , X _ { 2 } \text {, and } X _ { 3 } represent the times necessary to perform three successive repair tasks at a certain service facility. Suppose they are independent normal random variables with expected values μ1,μ1, and μ3 and variances σ12,σ12, and σ32\mu _ { 1 } , \mu _ { 1 } \text {, and } \mu _ { 3 } \text { and variances } \sigma _ { 1 } ^ { 2 } , \sigma _ { 1 } ^ { 2 } \text {, and } \sigma _ { 3 } ^ { 2 } \text {, } respectively.
a. If μ=μ2=μ3=65 and σ12=σ22=σ32=20\mu = \mu _ { 2 } = \mu _ { 3 } = 65 \text { and } \sigma _ { 1 } ^ { 2 } = \sigma_ { 2 } ^ { 2 } = \sigma_ { 3 } ^ { 2 } = 20 \text {, }

Calculate P(X1+X2+X3210)P \left( X _ { 1 } + X _ { 2 } + X _ { 3 } \leq 210 \right)
What is P(150X1+X2+X3210)?P \left( 150 \leq X _ { 1 } + X _ { 2 } + X _ { 3 } \leq 210 \right) ?
b. Using the μ2s and σ2s\mu _ { 2 } ^ { \prime } s \text { and } \sigma _ { 2 } ^ { \prime } s
given in part (a), calculate P(Xˉ59) and P(62Xˉ68)P ( \bar { X } \geq 59 ) \text { and } P ( 62 \leq \bar { X } \leq 68 )
c. Using the μ2s and σ2s\mu _ { 2 } ^ { \prime } s \text { and } \sigma _ { 2 } ^ { \prime } s
given in part (a), calculate P(10X1.5X2.5X35)P \left( - 10 \leq X _ { 1 } - .5 \mathrm { X } _ { 2 } - .5 X _ { 3 } \leq 5 \right)
d. If μ1=40,μ2=50,μ3=60,σ12=10,σ22=12, and σ32=14\mu _ { 1 } = 40 , \mu _ { 2 } = 50 , \mu _ { 3 } = 60 , \sigma _ { 1 } ^ { 2 } = 10 , \sigma _ { 2 } ^ { 2 } = 12 \text {, and } { \sigma_ { 3 } ^ { 2 } }= 14 \text {, }
calculate P(X1+X2+X3160) and P(X1+X22X3)P \left( X _ { 1 } + X _ { 2 } + X _ { 3 } \leq 160 \right) \text { and } P \left( X _ { 1 } + X _ { 2 } \geq 2 X _ { 3 } \right)

Correct Answer:

verifed

Verified

a. blured image blured image blured image b. blured image ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents