Solved

A Statistics Professor Investigated Some of the Factors That Affect y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon

Question 109

Essay

A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model: y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon .
Where:
y = final mark (out of 100). x1x _ { 1 } = number of lectures skipped. x2x _ { 2 } = number of late assignments. X3X _ { 3 } = mid-term test mark (out of 100).
The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS
 A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model:  y = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon  . Where: y = final mark (out of 100).  x _ { 1 }  = number of lectures skipped.  x _ { 2 }  = number of late assignments.  X _ { 3 }  = mid-term test mark (out of 100). The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS    = 41.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 }    \begin{array}{|c|ccc|} \hline \text { Predictor } & \text { Coef } & \text { StDev } & \mathrm{T} \\ \hline \text { Constant } & 41.6 & 17.8 & 2.337 \\ x_{1} & -3.18 & 1.66 & -1.916 \\ x_{2} & -1.17 & 1.13 & -1.035 \\ x_{3} & 0.63 & 0.13 & 4.846 \\ \hline \end{array}     \mathrm{S}=13.74 \quad \mathrm{R}-\mathrm{Sq}=30.0 \%   ANALYSIS OF VARIANCE  \begin{array}{|l|cccc|} \hline \text { Source of Variation } & \mathrm{df} & \mathrm{SS} & \mathrm{MS} & \mathrm{F} \\ \hline \text { Regression } & 3 & 3716 & 1238.667 & 6.558 \\ \text { Error } & 46 & 8688 & 188.870 & \\ \hline \text { Total } & 49 & 12404 & & \\ \hline \end{array}  Do these data provide enough evidence to conclude at the 5% significance level that the final mark and the number of skipped lectures are linearly related? =41.63.18x11.17x2+.63x3 = 41.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 }
 Predictor  Coef  StDev T Constant 41.617.82.337x13.181.661.916x21.171.131.035x30.630.134.846\begin{array}{|c|ccc|}\hline \text { Predictor } & \text { Coef } & \text { StDev } & \mathrm{T} \\\hline \text { Constant } & 41.6 & 17.8 & 2.337 \\x_{1} & -3.18 & 1.66 & -1.916 \\x_{2} & -1.17 & 1.13 & -1.035 \\x_{3} & 0.63 & 0.13 & 4.846 \\\hline\end{array}


S=13.74RSq=30.0%\mathrm{S}=13.74 \quad \mathrm{R}-\mathrm{Sq}=30.0 \%

ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regression 337161238.6676.558 Error 468688188.870 Total 4912404\begin{array}{|l|cccc|}\hline \text { Source of Variation } & \mathrm{df} & \mathrm{SS} & \mathrm{MS} & \mathrm{F} \\\hline \text { Regression } & 3 & 3716 & 1238.667 & 6.558 \\\text { Error } & 46 & 8688 & 188.870 & \\\hline \text { Total } & 49 & 12404 & & \\\hline\end{array} Do these data provide enough evidence to conclude at the 5% significance level that the final mark and the number of skipped lectures are linearly related?

Correct Answer:

verifed

Verified

blured image . blured image blured image 0.
Rejection region: | t ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents