Solved

Which of the Following Statements Best Describes Why a Linear

Question 32

Short Answer

Which of the following statements best describes why a linear regression is also called a least squares regression model? AA linear regression is al so called a least squares regression model because the regression  line is calculated by minimizing the square of the difference between each actual x data value and the predicted x value. B A linear regression is al so called a least squares regression model because the regression line is  calculated by minimizing the sum of the difference betweeneach actual y data value and the predicted y value. C A linear regression is al so called a least squares regression model because the regression line iscalculated by minimizing the square of each actual y  data value and the predicted y value.D A. linear regression is also called a least squares regression model because the regression line is calculatedby minimizing the sum of the square of the differences between  each actual y data value and the predicted y value.\begin{array}{|l|l|}\hline A&\text {A linear regression is al so called a least squares regression model because the regression }\\&\text { line is calculated by minimizing the square of the difference}\\&\text { between each actual \( x \) data value and the predicted \( \mathrm{x} \) value. }\\\hline B&\text { A linear regression is al so called a least squares regression model because the regression line is }\\&\text { calculated by minimizing the sum of the difference between}\\&\text {each actual y data value and the predicted y value. }\\\hline C&\text { A linear regression is al so called a least squares regression model because the regression line is}\\&\text {calculated by minimizing the square of each actual \( y \) }\\&\text { data value and the predicted \( y \) value.}\\\hline D&\text { A. linear regression is also called a least squares regression model because the regression line is calculated}\\&\text {by minimizing the sum of the square of the differences between }\\&\text { each actual y data value and the predicted y value.}\\\hline \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents