Services
Discover
Question 27
For f(x) =x2e10xf(x) =x^{2} e^{10 x}f(x) =x2e10x , find a function F(x) F(x) F(x) such that F′(x) =f(x) F^{\prime}(x) =f(x) F′(x) =f(x) and F(0) =0F(0) =0F(0) =0 .
A) e10x(110x2−150x+1500) −1500e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x+\frac{1}{500}\right) -\frac{1}{500}e10x(101x2−501x+5001) −5001 B) e10x(110x2−150x+1500) e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x+\frac{1}{500}\right) e10x(101x2−501x+5001) C) e10x(110x2−150x) e^{10 x}\left(\frac{1}{10} x^{2}-\frac{1}{50} x\right) e10x(101x2−501x) D) e10x(x330) e^{10 x}\left(\frac{x^{3}}{30}\right) e10x(30x3)
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q22: Calculate Q23: Find Q24: Use the table of antiderivatives toQ25: Calculate Q26: Q28:
Q23: Find Q24: Use the table of antiderivatives toQ25: Calculate Q26: Q28:
Q24: Use the table of antiderivatives to
Q25: Calculate Q26: Q28:
Q26: Q28:
Q28: