Solved

Consider the Model Yi=β1Xi+uiY _ { i } = \beta _ { 1 } X _ { i } + u _ { i }

Question 23

Essay

Consider the model Yi=β1Xi+uiY _ { i } = \beta _ { 1 } X _ { i } + u _ { i } , where the XiX _ { i } and the uiu _ { i } are mutually independent i.i.d. random variables with finite fourth moment and E(ui)=0E \left( u _ { i } \right) = 0 . Let β^1\widehat { \beta } _ { 1 } denote the OLS estimator of β1\beta _ { 1 } . Show that
n(β^1β1)=i=1nXiuini=1nXi2n.\sqrt { n } \left( \widehat { \beta } _ { 1 } - \beta _ { 1 } \right) = \frac { \frac { \sum _ { i = 1 } ^ { n } X _ { i } u _ { i } } { \sqrt { n } } } { \frac { \sum _ { i = 1 } ^ { n } X _ { i } ^ { 2 } } { n } } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents