Solved

Decide Whether the Expression Is or Is Not an Identity P=RI2\mathrm { P } = \mathrm { RI } ^ { 2 }

Question 122

Multiple Choice

Decide whether the expression is or is not an identity.
-The power dissipated in an electric circuit is given by the expression P=RI2\mathrm { P } = \mathrm { RI } ^ { 2 } , where R\mathrm { R } is the resistance of the circuit and I\mathrm { I } is the current through the circuit. For a sinusoidal alternating current, the current might be represented by the relation I=Asin(2πft) \mathrm { I } = \mathrm { A } \sin ( 2 \pi \mathrm { ft } ) , where A\mathrm { A } is the amplitude, f\mathrm { f } is the frequency, and t\mathrm { t } is time. Write an expression for P\mathrm { P } involving the sine function, and use a fundamental identity to write P\mathrm { P } in terms of the cosine function.


A) P=RAsin2(2πft) ;P=RARAcos2(2πft) P = R A \sin ^ { 2 } ( 2 \pi f t ) ; P = R A - R A \cos ^ { 2 } ( 2 \pi f t )
B) P=RA2sin2(2πft) ;P=RA2cos2(2πft) \mathrm { P } = \mathrm { RA } ^ { 2 } \sin ^ { 2 } ( 2 \pi \mathrm { ft } ) ; \mathrm { P } = - \mathrm { RA } ^ { 2 } \cos ^ { 2 } ( 2 \pi \mathrm { ft } )
C) P=RAsin2(2πft) ;P=RAcos2(2πft) P = R A \sin ^ { 2 } ( 2 \pi \mathrm { ft } ) ; P = R A - \cos ^ { 2 } ( 2 \pi f t )
D) P=RA2sin2(2πft) ;P=RA2RA2cos2(2πft) \mathrm { P } = \mathrm { RA } ^ { 2 } \sin ^ { 2 } ( 2 \pi \mathrm { ft } ) ; \mathrm { P } = \mathrm { RA } ^ { 2 } - \mathrm { RA } ^ { 2 } \cos ^ { 2 } ( 2 \pi \mathrm { ft } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents