Solved

Apply Principles of the Multiple Regression Model Building Process A) Model 2 Explains Less of the Variability in Average

Question 12

Multiple Choice

Apply principles of the multiple regression model building process.
-A sample of 30 companies was randomly selected for a study investigating what
Factors affect the size of company bonuses. Data were collected on the number of
Employees at the company and whether or not the employees were unionized (1 = yes,
0 = no) . Multiple regression output is shown below for two competing models. Which
Of the following statements is true?  Model 1:  Dependent Variable is Average Annual Bonus  Predictor  Coef  SE Coef  T  P  Constant 347.9872.20.400.693 Employees 0.65470.11055.920.000 Union 1259.5605.82.080.047S=1631.56RSq=62.48RSq(adjj) =59.6% Model 2:  Dependent Variable is Average Annual Bonus  Predictor  Coef  SE Coef  T  P  Constant 1241.0982.31.260.218 Employees 0.88720.13186.730.000 Union 525315793.330.003 Emp*Union 0.054240.020122.700.012S=1469.91RSq=70.68RSq(adj) =67.2%\begin{array} { l } \underline{\text { Model 1: }} \\\text { Dependent Variable is Average Annual Bonus } \\\\\begin{array} { l r r r r } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 347.9 & 872.2 & 0.40 & 0.693 \\\text { Employees } & 0.6547 & 0.1105 & 5.92 & 0.000 \\\text { Union } & 1259.5 & 605.8 & 2.08 & 0.047\end{array} \\\\S = 1631.56 \quad \mathrm { R } - \mathrm { Sq } = 62.48 \quad \mathrm { R } - \mathrm { Sq } ( \mathrm { adj } \mathrm { j } ) = 59.6\% \\\\\underline{ \text { Model 2: } } \\\text { Dependent Variable is Average Annual Bonus } \\\\\begin{array} { l r r r r } \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & - 1241.0 & 982.3 & - 1.26 & 0.218 \\\text { Employees } & 0.8872 & 0.1318 & 6.73 & 0.000 \\\text { Union } & 5253 & 1579 & 3.33 & 0.003\end{array} \\\begin{array} { l l l l l } \text { Emp*Union } & - 0.05424 & 0.02012 & - 2.70 & 0.012\end{array} \\\\S = 1469.91 \quad \mathrm { R } - \mathrm { Sq } = 70.68 \quad \mathrm { R } - \mathrm { Sq } ( \mathrm { adj } ) = 67.2\% \\\end{array}


A) Model 2 explains less of the variability in average annual bonus than model 1.
B) The standard deviation of residuals is lower for model 1 compared to model 2.
C) Model 1 includes an interaction term.
D) Model 2 is better than model 1.
E) Model 1 is better than model 2.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents