Solved

Perform Statistical Inference for Multiple Regression S=10.6075RSq=84.4%RSq(adjj)=83.3%S = 10.6075 \quad \mathrm { R } - \mathrm { Sq } = 84.4 \% \quad \mathrm { R } - \mathrm { Sq } ( \mathrm { adj } \mathrm { j } ) = 83.3 \%

Question 8

Short Answer

Perform statistical inference for multiple regression.
-What affects flat panel LCD TV sales? Flat panel LCD TV's are sold through a
Variety of outlets. Sales figures (number of units) for the popular Sony Bravia were
Obtained for last quarter from a sample of 30 different stores. Also collected were data
On the selling price and amount spent on advertising the Sony Bravia (as a percentage of
Total advertising expenditure in the previous quarter) at each store. Output is shown
Below. The correct null and alternative hypotheses for testing the regression coefficient
Of Price is  Dependent variable is  Sales  Predictor  Coef  SE Coef  T  P  Constant 90.1925.083.600.001 Price 0.030550.010053.040.005 Advertising 3.09260.36808.400.000\begin{array} { l r r r r } \text { Dependent variable is } & \text { Sales } & & \\ & & & & \\ \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 90.19 & 25.08 & 3.60 & 0.001 \\ \text { Price } & - 0.03055 & 0.01005 & - 3.04 & 0.005 \\ \text { Advertising } & 3.0926 & 0.3680 & 8.40 & 0.000 \end{array}
S=10.6075RSq=84.4%RSq(adjj)=83.3%S = 10.6075 \quad \mathrm { R } - \mathrm { Sq } = 84.4 \% \quad \mathrm { R } - \mathrm { Sq } ( \mathrm { adj } \mathrm { j } ) = 83.3 \%
A. H0::βP0H _ { 0 : } : \beta _ { \mathrm { P } } \neq 0 vs. HA:βP=0\mathrm { H } _ { \mathrm { A } : } \beta _ { \mathrm { P } } = 0
B. H0:βP0\mathrm { H } _ { 0 : } \beta _ { \mathrm { P } } \geq 0 vs. HA:βP<0\mathrm { H } _ { \mathrm { A } } : \beta _ { \mathrm { P } } < 0
C. H0:βP0\mathrm { H } _ { 0 } : \beta _ { \mathrm { P } } \leq 0 vs. HA:βP>0\mathrm { H } _ { \mathrm { A } } : \beta _ { \mathrm { P } } > 0
D. H0:βP=0\mathrm { H } _ { 0 : } \beta _ { \mathrm { P } } = 0 vs. HA:βP0\mathrm { H } _ { \mathrm { A } : } \beta _ { \mathrm { P } } \neq 0
E. H0\mathrm { H } _ { 0 } : The regression is not significant vs. HA\mathrm { H } _ { \mathrm { A } } : The regression is significant.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents