Solved

SCENARIO 17-2 One of the Most Common Questions of Prospective (Y)( Y )

Question 90

Multiple Choice

SCENARIO 17-2 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y) ( Y ) . To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X1) \left( X _ { 1 } \right) , the amount of insulation in inches (X2) \left( X _ { 2 } \right) , the number of windows in the house (X3) \left( X _ { 3 } \right) , and the age of the furnace in years (X4) \left( X _ { 4 } \right) . Given below are the EXCEL outputs of two regression models.

Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\text { Adjusted R Square } & 0.7568 \\\text { Observations } & 20 \\\hline\end{array}  ANOVA \text { ANOVA }
df SS MSF Significance F Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{lrrrrrr}\hline & d f & & {\text { SS }} & M S & F & \text { Significance } F \\\hline \text { Regression } && 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } && 15 & 40262.3259 & 2684.155 & & \\\text { Total } && 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intereept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature)  4.50980.81295.54760.00005.93493.0847X2 (Insulation)  14.90295.05082.95050.009923.75736.0485X3 (Windows)  0.21514.86750.04420.96538.31818.7484X4 (Furnace Age)  6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intereept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}

 Model 2\text { Model } 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\text { Adjusted R Square } & 0.7506 \\\text { Observations } & 20 \\\hline\end{array}

 ANOVA \text { ANOVA }
 SCENARIO 17-2 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars  ( Y )  . To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit  \left( X _ { 1 } \right)  , the amount of insulation in inches  \left( X _ { 2 } \right)  , the number of windows in the house  \left( X _ { 3 } \right)  , and the age of the furnace in years  \left( X _ { 4 } \right)  . Given below are the EXCEL outputs of two regression models.  Model 1  \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { R Square } & 0.8080 \\ \text { Adjusted R Square } & 0.7568 \\ \text { Observations } & 20 \\ \hline \end{array}   \text { ANOVA }   \begin{array}{lrrrrrr} \hline & d f & & {\text { SS }} & M S & F & \text { Significance } F \\ \hline \text { Regression } && 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\ \text { Residual } && 15 & 40262.3259 & 2684.155 & & \\ \text { Total } && 19 & 209765.75 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\ \hline \text { Intereept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\ \mathrm{X}_{1} \text { (Temperature)  } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\ \mathrm{X}_{2} \text { (Insulation)  } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\ \mathrm{X}_{3} \text { (Windows)  } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\ \mathrm{X}_{4} \text { (Furnace Age)  } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702 \end{array}    \text { Model } 2    \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { R Square } & 0.7768 \\ \text { Adjusted R Square } & 0.7506 \\ \text { Observations } & 20 \\ \hline \end{array}    \text { ANOVA }      \begin{array}{lrrllrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\ \mathrm{X}_{1} \text { (Temperature)  } & -5.1103 & 0.6951 & -7.3515 & 0.0000 & -6.5769 & -3.6437 \\ \mathrm{X}_{2} \text { (Insulation)  } & -14.7195 & 4.8864 & -3.0123 & 0.0078 & -25.0290 & -4.4099 \end{array}  -Referring to Scenario 17-2, what is the value of the partial F test statistic for  H _ { 0 } : \beta _ { 3 } = \beta _ { 4 } = 0 \text { vs. } H _ { 1 } : \text { At least one } \beta _ { j } \neq 0 , j = 3,4  ? A)  0.820 B)  1.219 C)  1.382 D)  15.787

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature)  5.11030.69517.35150.00006.57693.6437X2 (Insulation)  14.71954.88643.01230.007825.02904.4099\begin{array}{lrrllrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm{X}_{1} \text { (Temperature) } & -5.1103 & 0.6951 & -7.3515 & 0.0000 & -6.5769 & -3.6437 \\\mathrm{X}_{2} \text { (Insulation) } & -14.7195 & 4.8864 & -3.0123 & 0.0078 & -25.0290 & -4.4099\end{array}
-Referring to Scenario 17-2, what is the value of the partial F test statistic for H0:β3=β4=0 vs. H1: At least one βj0,j=3,4H _ { 0 } : \beta _ { 3 } = \beta _ { 4 } = 0 \text { vs. } H _ { 1 } : \text { At least one } \beta _ { j } \neq 0 , j = 3,4 ?


A) 0.820
B) 1.219
C) 1.382
D) 15.787

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents