Solved

SCENARIO 14-11
a Weight-Loss Clinic Wants to Use Regression Analysis Y= Y=

Question 161

Multiple Choice

SCENARIO 14-11
A weight-loss clinic wants to use regression analysis to build a model for weight loss of a client
(measured in pounds) . Two variables thought to affect weight loss are client's length of time on the
weight-loss program and time of session. These variables are described below: Y= Y= Weight loss (in pounds)
X1= X_{1}= Length of time in weight-loss program (in months)
X2=1 X_{2}=1 if morning session, 0 if not
Data for 25 clients on a weight-loss program at the clinic were collected and used to fit the interaction model: Y=β0+β1X1+β2X2+β3X1X2+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon

 Output from Microsoft Excel follows: \text { Output from Microsoft Excel follows: }

 Regression Statistics  Multiple R 0.7308 R Square 0.5341 Adjusted R Square 0.4675 Standard Error 43.3275 Observations 25\begin{array}{lr}{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7308 \\\text { R Square } & 0.5341 \\\text { Adjusted R Square } & 0.4675 \\\text { Standard Error } & 43.3275 \\\text { Observations } & 25 \\\hline\end{array}

 ANOVA \text { ANOVA }
 SCENARIO 14-11 A weight-loss clinic wants to use regression analysis to build a model for weight loss of a client (measured in pounds) . Two variables thought to affect weight loss are client's length of time on the weight-loss program and time of session. These variables are described below:   Y=   Weight loss (in pounds)    X_{1}=   Length of time in weight-loss program (in months)    X_{2}=1   if morning session, 0 if not Data for 25 clients on a weight-loss program at the clinic were collected and used to fit the interaction model:   Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon     \text { Output from Microsoft Excel follows: }    \begin{array}{lr} {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7308 \\ \text { R Square } & 0.5341 \\ \text { Adjusted R Square } & 0.4675 \\ \text { Standard Error } & 43.3275 \\ \text { Observations } & 25 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } & {t \text { Stot }} & \rho_{\text {-value }} & \text { Lower 99\% } & \text { Upper 99\% } \\ \hline \text { Intercept } & -20.7298 & 22.3710 & -0.9266 & 0.3646 & -84.0702 & 42.6106 \\ \text { Length } & 7.2472 & 1.4992 & 4.8340 & 0.0001 & 3.0024 & 11.4919 \\ \text { Morn } & 90.1981 & 40.2336 & 2.2419 & 0.0359 & -23.7176 & 204.1138 \\ \text { Length × Morn } & -5.1024 & 3.3511 & -1.5226 & 0.1428 & -14.5905 & 4.3857 \end{array}    -In a multiple regression model, the adjusted  r ^ { 2 }  A)  cannot be negative. B)  can sometimes be negative. C)  can sometimes be greater than +1. D)  has to fall between 0 and +1.

 Coefficients  Standard Error t Stot ρ-value  Lower 99%  Upper 99%  Intercept 20.729822.37100.92660.364684.070242.6106 Length 7.24721.49924.83400.00013.002411.4919 Morn 90.198140.23362.24190.035923.7176204.1138 Length × Morn 5.10243.35111.52260.142814.59054.3857\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } & {t \text { Stot }} & \rho_{\text {-value }} & \text { Lower 99\% } & \text { Upper 99\% } \\\hline \text { Intercept } & -20.7298 & 22.3710 & -0.9266 & 0.3646 & -84.0702 & 42.6106 \\\text { Length } & 7.2472 & 1.4992 & 4.8340 & 0.0001 & 3.0024 & 11.4919 \\\text { Morn } & 90.1981 & 40.2336 & 2.2419 & 0.0359 & -23.7176 & 204.1138 \\\text { Length × Morn } & -5.1024 & 3.3511 & -1.5226 & 0.1428 & -14.5905 & 4.3857\end{array}


-In a multiple regression model, the adjusted r2r ^ { 2 }


A) cannot be negative.
B) can sometimes be negative.
C) can sometimes be greater than +1.
D) has to fall between 0 and +1.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents