Solved

Consider the Partial Printout for an Interaction Regression Analysis of the Relationship

Question 59

Essay

Consider the partial printout for an interaction regression analysis of the relationship between a dependent variable y and two independent variables x1 and x2.  ANOVA df SS  MS F Significance F Regression 33393.6773241131.2257759391.9747822.11084E11 Residual 60.7226759870.120445998 Total 93394.4 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 16.721970148.2839972192.0185871260.090076543.54825565936.99219593 X1 3.0373177592.6787487051.1338569210.3001163829.5919845063.517348987 X2 1.0465227541.5471326450.6764272970.5239739884.8322227272.73917722 X1X2 4.0716851470.4440599339.1692243459.47663E052.985108845.158261454\begin{array}{l}\text { ANOVA }\\\begin{array} { l l l l l l } \hline & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 3 & 3393.677324 & 1131.225775 & 9391.974782 & 2.11084 \mathrm { E } - 11 \\\text { Residual } & 6 & 0.722675987 & 0.120445998 & & \\\text { Total } & 9 & 3394.4 & & & \\\hline\\\end{array}\\\begin{array} { l l l l l l l } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 16.72197014 & 8.283997219 & 2.018587126 & 0.09007654 & - 3.548255659 & 36.99219593 \\\text { X1 } & - 3.037317759 & 2.678748705 & - 1.133856921 & 0.300116382 & - 9.591984506 & 3.517348987 \\\text { X2 } & - 1.046522754 & 1.547132645 & - 0.676427297 & 0.523973988 & - 4.832222727 & 2.73917722 \\\text { X1X2 } & 4.071685147 & 0.444059933 & 9.169224345 & 9.47663 \mathrm { E } - 05 & 2.98510884 & 5.158261454 \\\hline\end{array}\end{array} a. Write the prediction equation for the interaction model.
b. Test the overall utility of the interaction model using the global FF -test at α=.05\alpha = .05 .
c. Test the hypothesis (at α=.05\alpha = .05 ) that x1x _ { 1 } and x2x _ { 2 } interact positively.
d. Estimate the change in yy for each additional 1-unit increase in x1x _ { 1 } when x2=6x _ { 2 } = 6 . 3 Test for Interaction Between Two Variables

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents