Solved

The Model E(y)=β0+β1x1+β2x2+β3x3+β4x4E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \beta _ { 4 } x _ { 4 }

Question 86

Essay

The model E(y)=β0+β1x1+β2x2+β3x3+β4x4E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \beta _ { 4 } x _ { 4 } was used to relate E(y)E ( y ) to a single qualitative variable, where
x1={1 if level 2 0 if not x2={1 if level 30 if not x3={1 if level 4x40 if not {1 if level 50 if not \begin{array} { l l } x _ { 1 } = \left\{ \begin{array} { l l } 1 & \text { if level 2 } \\0 & \text { if not }\end{array} \right. & x _ { 2 } = \left\{ \begin{array} { l l } 1 & \text { if level } 3 \\0 & \text { if not }\end{array} \right. \\x _ { 3 } = \left\{ \begin{array} { l l l } 1 & \text { if level } 4 & x _ { 4 } \\0 & \text { if not }\end{array} \right. & \left\{ \begin{array} { l l } 1 & \text { if level } 5 \\0 & \text { if not }\end{array} \right.\end{array}
This model was fit to n=40n = 40 data points and the following result was obtained:
y^=14.5+3x14x2+10x3+8x4\hat { y } = 14.5 + 3 x _ { 1 } - 4 x _ { 2 } + 10 x _ { 3 } + 8 x _ { 4 }
a. Use the least squares prediction equation to find the estimate of E(y)E ( y ) for each level of the qualitative variable.
b. Specify the null and alternative hypothesis you would use to test whether E(y)E ( y ) is the same for all levels of the independent variable. 3 Test if Model is Useful for Predicting y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents