Solved

Consider the Model Where x1x _ { 1 } Is a Quantitative Variable And

Question 87

Multiple Choice

Consider the model y=β0+β1x1+β2x12+β3x2+β4x3+β5x1x2+β6x1x3+β7x12x2+β812x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 1 } ^ { 2 } + \beta _ { 3 } x _ { 2 } + \beta _ { 4 } x _ { 3 } + \beta _ { 5 } x _ { 1 } x _ { 2 } + \beta _ { 6 } x _ { 1 } x _ { 3 } + \beta _ { 7 } x _ { 1 } ^ { 2 } x _ { 2 } + \beta _ { 8 } 1 ^ { 2 } x _ { 3 } + \varepsilon
where x1x _ { 1 } is a quantitative variable and x2x _ { 2 } and x3x _ { 3 } are dummy variables describing a qualitative variable at three levels using the coding scheme
x2={1 if level 20 otherwise x3={1 if level 30 otherwise x _ { 2 } = \left\{ \begin{array} { l l } 1 & \text { if level } 2 \\ 0 & \text { otherwise } \end{array} \quad x _ { 3 } = \left\{ \begin{array} { l l } 1 & \text { if level } 3 \\ 0 & \text { otherwise } \end{array} \right. \right.
The resulting least squares prediction equation is
y^=8.81.1x1+3.2x12+1.6x24.4x3+.02x1x2+1.3x1x3+.01x12x2.06x12x3\hat { y } = 8.8 - 1.1 x _ { 1 } + 3.2 x _ { 1 } ^ { 2 } + 1.6 x _ { 2 } - 4.4 x _ { 3 } + .02 x _ { 1 } x _ { 2 } + 1.3 x _ { 1 } x _ { 3 } + .01 x _ { 1 } ^ { 2 } x _ { 2 } - .06 x _ { 1 } ^ { 2 } x _ { 3 }
What is the equation of the response curve for E(y) E ( y ) when x2=0x _ { 2 } = 0 and x3=0x _ { 3 } = 0 ?


A) y=8.81.6x24.4x3y = 8.8 - 1.6 x _ { 2 } - 4.4 x _ { 3 }
B) y=8.8.22x1+3.15x12y = 8.8 - .22 x _ { 1 } + 3.15 x _ { 1 } ^ { 2 }
C) y=8.81.3x1+3.2x12y = 8.8 - 1.3 x _ { 1 } + 3.2 x _ { 1 } ^ { 2 }
D) y=8.81.1x1+3.2x12y = 8.8 - 1.1 x _ { 1 } + 3.2 x _ { 1 } ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents