Solved

The Regression Below Predicts the Daily Number of Skiers Who FF

Question 18

Essay

The regression below predicts the daily number of skiers who visit a small ski resort based on three explanatory variables.
The data is a random sample of 30 days from the past two ski seasons. The variables are: SKIERS the number of skiers who visit the resort on that day
SNOW the number of inches of snow on the ground
TEMP the high temperature for the day in degrees FF .
WEEKDAY an indicator variable, weekday =1= 1 , weekend =0= 0
Dependent variable is Skiers
R squared =25.4%R= 25.4 \% \quad \mathrm { R } squared (adjusted) =16.8%= 16.8 \%
s=125.1s = 125.1 with 304=2630 - 4 = 26 degrees of freedom

 The regression below predicts the daily number of skiers who visit a small ski resort based on three explanatory variables. The data is a random sample of 30 days from the past two ski seasons. The variables are: SKIERS the number of skiers who visit the resort on that day SNOW the number of inches of snow on the ground TEMP the high temperature for the day in degrees  F . WEEKDAY an indicator variable, weekday  = 1 , weekend  = 0  Dependent variable is Skiers R squared  = 25.4 \% \quad \mathrm { R }  squared (adjusted)  = 16.8 \%   s = 125.1  with  30 - 4 = 26  degrees of freedom      \begin{array}{lrrrr} \text { Variable } & \text { Coefficient } & \text { SE(Coeff) } & \text { t-ratio } & \text { p-value } \\ \text { Constant } & 559.869 & 76.78 & 7.29 & <0.0001 \\ \text { Snow } & 1.424 & 2.70 & 0.53 & 0.6019 \\ \text { Temp } & -1.604 & 2.77 & -0.58 & 0.5677 \\ \text { Weekend } & 147.349 & 51.86 & 2.84 & 0.0086 \end{array}      -If you think that the temperature might affect attendance differently on weekends than on weekdays, how would you change the regression to test this?

 Variable  Coefficient  SE(Coeff)  t-ratio  p-value  Constant 559.86976.787.29<0.0001 Snow 1.4242.700.530.6019 Temp 1.6042.770.580.5677 Weekend 147.34951.862.840.0086\begin{array}{lrrrr}\text { Variable } & \text { Coefficient } & \text { SE(Coeff) } & \text { t-ratio } & \text { p-value } \\\text { Constant } & 559.869 & 76.78 & 7.29 & <0.0001 \\\text { Snow } & 1.424 & 2.70 & 0.53 & 0.6019 \\\text { Temp } & -1.604 & 2.77 & -0.58 & 0.5677 \\\text { Weekend } & 147.349 & 51.86 & 2.84 & 0.0086\end{array}


 The regression below predicts the daily number of skiers who visit a small ski resort based on three explanatory variables. The data is a random sample of 30 days from the past two ski seasons. The variables are: SKIERS the number of skiers who visit the resort on that day SNOW the number of inches of snow on the ground TEMP the high temperature for the day in degrees  F . WEEKDAY an indicator variable, weekday  = 1 , weekend  = 0  Dependent variable is Skiers R squared  = 25.4 \% \quad \mathrm { R }  squared (adjusted)  = 16.8 \%   s = 125.1  with  30 - 4 = 26  degrees of freedom      \begin{array}{lrrrr} \text { Variable } & \text { Coefficient } & \text { SE(Coeff) } & \text { t-ratio } & \text { p-value } \\ \text { Constant } & 559.869 & 76.78 & 7.29 & <0.0001 \\ \text { Snow } & 1.424 & 2.70 & 0.53 & 0.6019 \\ \text { Temp } & -1.604 & 2.77 & -0.58 & 0.5677 \\ \text { Weekend } & 147.349 & 51.86 & 2.84 & 0.0086 \end{array}      -If you think that the temperature might affect attendance differently on weekends than on weekdays, how would you change the regression to test this?
-If you think that the temperature might affect attendance differently on weekends than on
weekdays, how would you change the regression to test this?

Correct Answer:

verifed

Verified

We could add an interaction term, Temp ×...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents