Solved

Solve the Problem σ21/σ22\sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 }

Question 103

Multiple Choice

Solve the problem.
-A confidence interval estimate of the ratio σ21/σ22\sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 } can be found using the following expression:
(s12 s221 FR) <σ12σ22<(s12 s221 FL) \left(\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}} \cdot \frac{1}{\mathrm{~F}_{\mathrm{R}}}\right) <\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\left(\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}} \cdot \frac{1}{\mathrm{~F}_{\mathrm{L}}}\right)
where FR\mathrm { F } _ { \mathrm { R } } is found in the standard way and FL\mathrm { F } _ { \mathrm { L } } is found as follows: interchange the degrees of freedom, and then take the reciprocal of the resulting F value found in table A-5.
A manager at a bank is interested in the standard deviation of the waiting times when a single waiting line is us when individual lines are used. Obtain a 95%95 \% confidence interval for σ21/σ22\sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 } given the following sample data:
Sample 1: multiple waiting lines: n1=13, s1=2.1\mathrm { n } _ { 1 } = 13 , \mathrm {~s} _ { 1 } = 2.1 minutes
Sample 2: single waiting line: n2=16, s2=1.2\mathrm { n } _ { 2 } = 16 , \mathrm {~s} _ { 2 } = 1.2 minutes


A) 1.03<σ21/σ2<9.741.03 < \sigma \frac { 2 } { 1 } / \sigma 2 < 9.74
B) 1.06<σσ12/σ22<7.751.06 < \sigma \sigma _ { 1 } ^ { 2 } / \sigma \frac { 2 } { 2 } < 7.75
C) 1.03<σ21/σ22<9.071.03 < \sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 } < 9.07
D) 1.23<σ21/σ22<8.021.23 < \sigma \frac { 2 } { 1 } / \sigma \frac { 2 } { 2 } < 8.02

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents