Solved

A Confidence Interval for The yy -Intercept β0\beta _ { 0 }

Question 87

Multiple Choice

A confidence interval for the yy -intercept β0\beta _ { 0 } for a regression line y=β0+β1xy = \beta _ { 0 } + \beta _ { 1 } x can be found by evaluating the limits in the interval below:
b0E<β0<b0+E,\mathrm { b } _ { 0 } - \mathrm { E } < \beta _ { 0 } < \mathrm { b } _ { 0 } + \mathrm { E } ,
where E=(tα/2) se1n+x2/[x2(x) 2/n]\mathrm { E } = \left( \mathrm { t } _ { \alpha / 2 } \right) \mathrm { se } \sqrt { \frac { 1 } { \mathrm { n } } + \overline { \mathrm { x } } 2 / \left[ \sum \mathrm { x } ^ { 2 } - \left( \sum \mathrm { x } \right) ^ { 2 } / \mathrm { n } \right] } .
The critical value tα/2t _ { \alpha / 2 } is found from the tt -table using n2n - 2 degrees of freedom and b0b _ { 0 } is calculated in the usual v from the sample data.
Use the data below to obtain a 95%95 \% confidence interval estimate of β0\beta _ { 0 } .
x (hours studied)  2.54.55.17.911.6y (score on test)  6670608393\begin{array}{c|ccccc}\mathrm{x} \text { (hours studied) } & 2.5 & 4.5 & 5.1 & 7.9 & 11.6 \\\hline \mathrm{y} \text { (score on test) } & 66 & 70 & 60 & 83 & 93\end{array}


A) 31.10<β0<74.6631.10 < \beta _ { 0 } < 74.66
B) 37.83<β0<67.9337.83 < \beta _ { 0 } < 67.93
C) 33.50<β0<72.2633.50 < \beta _ { 0 } < 72.26
D) 28.10<β0<77.6628.10 < \beta _ { 0 } < 77.66

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents