Solved

Use Computer Software to Find the Best Regression Equation to Explain

Question 118

Multiple Choice

Use computer software to find the best regression equation to explain the variation in the dependent variable, Y, in terms of the independent variables, X1, X2, X3
- YX1X2X334445.067.51 CORRELATION COEFFICIENTS 41654.072.01Y/X1=.95122041.070.02Y/X2=.78936049.068.51Y/X3=.61633244.073.0114032.063.0243648.072.01 COEFFICIENTS OF DETERMINATION 13233.061.0235648.064.02Y1/X1=.90515035.059.01X1,X2=.91920240.063.02Y1,X2,X3=.92736550.070.51\begin{array} { c c c l c } \mathrm { Y } & \mathrm { X } _ { 1 } & \mathrm { X } _ { 2 } & \mathrm { X } _ { 3 } & \\ 344 & 45.0 & 67.5 & 1 & \text { CORRELATION COEFFICIENTS } \\ 416 & 54.0 & 72.0 & 1 & \mathrm { Y } / \mathrm { X } _ { 1 } = .951 \\ 220 & 41.0 & 70.0 & 2 & \mathrm { Y } / \mathrm { X } _ { 2 } = .789 \\ 360 & 49.0 & 68.5 & 1 & \mathrm { Y } / \mathrm { X } _ { 3 } = - .616 \\ 332 & 44.0 & 73.0 & 1 & \\ 140 & 32.0 & 63.0 & 2 & \\ 436 & 48.0 & 72.0 & 1 & \text { COEFFICIENTS OF DETERMINATION } \\ 132 & 33.0 & 61.0 & 2 & \\ 356 & 48.0 & 64.0 & 2 & \mathrm { Y } _ { 1 } / \mathrm { X } _ { 1 } = .905 \\ 150 & 35.0 & 59.0 & 1 & \mathrm { X } _ { 1 } , \mathrm { X } _ { 2 } = .919 \\ 202 & 40.0 & 63.0 & 2 & \mathrm { Y } _ { 1 } , \mathrm { X } _ { 2 } , \mathrm { X } _ { 3 } = .927 \\ 365 & 50.0 & 70.5 & 1 & \end{array}


A) Y^=355+14.9X1\hat { Y } = - 355 + 14.9 X _ { 1 }
B) Y^=442+12.1X1+3.58X223.8X3\hat { Y } = - 442 + 12.1 X _ { 1 } + 3.58 X _ { 2 } - 23.8 X _ { 3 }
C) Y^=412+13.6X1+3.15X2\hat { Y } = - 412 + 13.6 X _ { 1 } + 3.15 X _ { 2 }
D) Y^=543+12.8X1+4.15X2\hat { Y } = - 543 + 12.8 X _ { 1 } + 4.15 X _ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents