Solved

Find the Derivative of the Function y=θ4e2θcos4θ\mathrm { y } = \theta ^ { 4 } \mathrm { e } ^ { - 2 \theta } \cos 4 \theta

Question 296

Multiple Choice

Find the derivative of the function.
- y=θ4e2θcos4θ\mathrm { y } = \theta ^ { 4 } \mathrm { e } ^ { - 2 \theta } \cos 4 \theta


A) 56θ3e2θsin4θ- 56 \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } \sin 4 \theta
B) θ3e2θ(4cos4θ2cos4θ+4cos4θ) \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } ( 4 \cos 4 \theta - 2 \cos 4 \theta + 4 \cos 4 \theta )
C) 4θ3e2θsin4θ- 4 \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } \sin 4 \theta
D) θ3e2θ(4cos4θ2θcos4θ4θsin4θ) \theta ^ { 3 } \mathrm { e } ^ { - 2 \theta } ( 4 \cos 4 \theta - 2 \theta \cos 4 \theta - 4 \theta \sin 4 \theta )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents