Solved

Solve the Problem rr And Volume V=43πr3\mathrm { V } = \frac { 4 } { 3 } \pi \mathrm { r } ^ { 3 }

Question 499

Multiple Choice

Solve the problem.
-Suppose that the radius rr and volume V=43πr3\mathrm { V } = \frac { 4 } { 3 } \pi \mathrm { r } ^ { 3 } of a sphere are differentiable functions of t\mathrm { t } . Write an equation that relates dV/dt\mathrm { dV } / \mathrm { dt } to dr/dt\mathrm { dr } / \mathrm { dt } .


A) dVdt=4πr2drdt\frac { d V } { d t } = 4 \pi r ^ { 2 } \frac { d r } { d t }
B) dVdt=4πdrdt\frac { d V } { d t } = 4 \pi \frac { d r } { d t }
C) dVdt=43πr2drdt\frac { d V } { d t } = \frac { 4 } { 3 } \pi r ^ { 2 } \frac { d r } { d t }
D) dVdt=3r2drdt\frac { d V } { d t } = 3 r ^ { 2 } \frac { d r } { d t }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents