Solved

A Petrol Car Is Parked 40 Feet from a Long  of the car turns at a rate of 30 revolutions per minute. Write θ as a function of x\text { of the car turns at a rate of } 30 \text { revolutions per minute. Write } \theta \text { as a function of } x \text {. }

Question 165

Multiple Choice

A petrol car is parked 40 feet from a long warehouse (see figure) . The revolving light on top  of the car turns at a rate of 30 revolutions per minute. Write θ as a function of x\text { of the car turns at a rate of } 30 \text { revolutions per minute. Write } \theta \text { as a function of } x \text {. }
 A petrol car is parked 40 feet from a long warehouse (see figure) . The revolving light on top  \text { of the car turns at a rate of } 30 \text { revolutions per minute. Write } \theta \text { as a function of } x \text {. }    A)   \theta = \arctan \left( \frac { x } { 40 } \right)   B)   \theta = \tan \left( \frac { x } { 40 } \right)   C)   \theta = \tan \left( \frac { 40 } { x } \right)   D)   \theta = \arctan \left( \frac { 40 } { x } \right)   E)   \theta = \arctan ( 40 x )


A) θ=arctan(x40) \theta = \arctan \left( \frac { x } { 40 } \right)
B) θ=tan(x40) \theta = \tan \left( \frac { x } { 40 } \right)
C) θ=tan(40x) \theta = \tan \left( \frac { 40 } { x } \right)
D) θ=arctan(40x) \theta = \arctan \left( \frac { 40 } { x } \right)
E) θ=arctan(40x) \theta = \arctan ( 40 x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents